1,449 research outputs found

    Favoring Generalists over Specialists: How Attentional Biasing Improves Perceptual Category Learning

    Full text link
    A model of cortical learning is proposed, which incorporates supervised feedback using two forms of attention: (i) feature-specific attention which allows the network to learn associations between specific feature conjunctions (or categories) and outputs, and (ii) nonspecific attentional "vigilance" which biases this learning when the associations appear to be incorrect. Attentional vigilance improves learning if it favors, via modulatory weights, generalist categories over specialist categories. A biologically plausible neural network is proposed which implements these computational principles and which outperforms several classifiers on classification benchmarks.Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-1-0409

    A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy

    Full text link
    Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    A statistical theory of digital circuit testability

    Full text link

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Handwritten digit classification

    Get PDF
    Pattern recognition is one of the major challenges in statistics framework. Its goal is the feature extraction to classify the patterns into categories. A well-known example in this field is the handwritten digit recognition where digits have to be assigned into one of the 10 classes using some classification method. Our purpose is to present alternative classification methods based on statistical techniques. We show a comparison between a multivariate and a probabilistic approach, concluding that both methods provide similar results in terms of test-error rate. Experiments are performed on the known MNIST and USPS databases in binary-level image. Then, as an additional contribution we introduce a novel method to binarize images, based on statistical concepts associated to the written trace of the digitDigit, Classification, Images

    Computer analysis of EEG data for a normative library Final report, Sep. 24, 1963 - Jan. 31, 1966

    Get PDF
    Computer analysis of electroencephalographic data for development of normative criteri
    corecore