1,288 research outputs found

    Induction of Topological Environment Maps from Sequences of Visited Places

    Get PDF
    In this paper we address the problem of topologically mapping environments which contain inherent perceptual aliasing caused by repeated environment structures. We propose an approach that does not use motion or odometric information but only a sequence of deterministic measurements observed by traversing an environment. Our algorithm implements a stochastic local search to build a small map which is consistent with local adjacency information extracted from a sequence of observations. Moreover, local adjacency information is incorporated to disambiguate places which are physically different but appear identical to the robots senses. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that it infers a small map quickly

    A biologically inspired meta-control navigation system for the Psikharpax rat robot

    Get PDF
    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e. g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    A minimalistic approach to appearance-based visual SLAM

    Get PDF
    This paper presents a vision-based approach to SLAM in indoor / outdoor environments with minimalistic sensing and computational requirements. The approach is based on a graph representation of robot poses, using a relaxation algorithm to obtain a globally consistent map. Each link corresponds to a relative measurement of the spatial relation between the two nodes it connects. The links describe the likelihood distribution of the relative pose as a Gaussian distribution. To estimate the covariance matrix for links obtained from an omni-directional vision sensor, a novel method is introduced based on the relative similarity of neighbouring images. This new method does not require determining distances to image features using multiple view geometry, for example. Combined indoor and outdoor experiments demonstrate that the approach can handle qualitatively different environments (without modification of the parameters), that it can cope with violations of the “flat floor assumption” to some degree, and that it scales well with increasing size of the environment, producing topologically correct and geometrically accurate maps at low computational cost. Further experiments demonstrate that the approach is also suitable for combining multiple overlapping maps, e.g. for solving the multi-robot SLAM problem with unknown initial poses
    corecore