156 research outputs found

    Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths

    Get PDF
    We report the first computational super-resolved, multi-camera integral imaging at long-wave infrared (LWIR) wavelengths. A synchronized array of FLIR Lepton cameras was assembled, and computational super-resolution and integral-imaging reconstruction employed to generate video with light-field imaging capabilities, such as 3D imaging and recognition of partially obscured objects, while also providing a four-fold increase in effective pixel count. This approach to high-resolution imaging enables a fundamental reduction in the track length and volume of an imaging system, while also enabling use of low-cost lens materials.Comment: Supplementary multimedia material in http://dx.doi.org/10.6084/m9.figshare.530302

    Compact multi-aperture imaging with high-angular-resolution

    Get PDF
    Previous reports have demonstrated that it is possible to emulate the imaging function of a single conventional lens with an NxN array of identical lenslets to provide an N-fold reduction in imaging-system track length. This approach limits the application to low-resolution imaging. We highlight how using an array of dissimilar lenslets, with an array width that can be much wider than the detector array, high-resolution super-resolved imaging is possible. We illustrate this approach with a ray-traced design and optimization of a long-wave infrared system employing a 3x3 array of free-form lenslets to provide a four-fold reduction in track length compared to a baseline system. Simulations of image recovery show that recovered image quality is comparable to that of the baseline system

    Real-time refocusing using an FPGA-based standard plenoptic camera

    Get PDF
    Plenoptic cameras are receiving increased attention in scientific and commercial applications because they capture the entire structure of light in a scene, enabling optical transforms (such as focusing) to be applied computationally after the fact, rather than once and for all at the time a picture is taken. In many settings, real-time inter active performance is also desired, which in turn requires significant computational power due to the large amount of data required to represent a plenoptic image. Although GPUs have been shown to provide acceptable performance for real-time plenoptic rendering, their cost and power requirements make them prohibitive for embedded uses (such as in-camera). On the other hand, the computation to accomplish plenoptic rendering is well structured, suggesting the use of specialized hardware. Accordingly, this paper presents an array of switch-driven finite impulse response filters, implemented with FPGA to accomplish high-throughput spatial-domain rendering. The proposed architecture provides a power-efficient rendering hardware design suitable for full-video applications as required in broadcasting or cinematography. A benchmark assessment of the proposed hardware implementation shows that real-time performance can readily be achieved, with a one order of magnitude performance improvement over a GPU implementation and three orders ofmagnitude performance improvement over a general-purpose CPU implementation

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    An Efficient Refocusing Scheme for Camera-Array Captured Light Field Video for Improved Visual Immersiveness

    Get PDF
    Light field video technology attempts to acquire human-like visual data, offering unprecedented immersiveness and a viable path for producing high-quality VR content. Refocusing that is one of the key properties of light field and a must for mixed reality applications has shown to work well for microlens based cameras, but as light field videos acquired by camera arrays have a low angular resolution, the refocused quality suffers. In this paper, we present an approach to improve the visual quality of refocused content captured by a camera array-based setup. Increasing the angular resolution using existing deep learning-based view synthesis method and refocusing the video using shift and sum refocusing algorithm produces over blurring of the in-focus region. Our enhancement method targets these blurry pixels and improves their quality by similarity detection and blending. Experimental results show that the proposed approach achieves better refocusing quality compared to traditional methods

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Range Finding with a Plenoptic Camera

    Get PDF
    The plenoptic camera enables simultaneous collection of imagery and depth information by sampling the 4D light field. The light field is distinguished from data sets collected by stereoscopic systems because it contains images obtained by an N by N grid of apertures, rather than just the two apertures of the stereoscopic system. By adjusting parameters of the camera construction, it is possible to alter the number of these `subaperture images,\u27 often at the cost of spatial resolution within each. This research examines a variety of methods of estimating depth by determining correspondences between subaperture images. A major finding is that the additional \u27apertures\u27 provided by the plenoptic camera do not greatly improve the accuracy of depth estimation. Thus, the best overall performance will be achieved by a design which maximizes spatial resolution at the cost of angular samples. For this reason, it is not surprising that the performance of the plenoptic camera should be comparable to that of a stereoscopic system of similar scale and specifications. As with stereoscopic systems, the plenoptic camera has its most immediate, realistic applications in the domains of robotic navigation and 3D video collection

    Coherent multi-dimensional segmentation of multiview images using a variational framework and applications to image based rendering

    No full text
    Image Based Rendering (IBR) and in particular light field rendering has attracted a lot of attention for interpolating new viewpoints from a set of multiview images. New images of a scene are interpolated directly from nearby available ones, thus enabling a photorealistic rendering. Sampling theory for light fields has shown that exact geometric information in the scene is often unnecessary for rendering new views. Indeed, the band of the function is approximately limited and new views can be rendered using classical interpolation methods. However, IBR using undersampled light fields suffers from aliasing effects and is difficult particularly when the scene has large depth variations and occlusions. In order to deal with these cases, we study two approaches: New sampling schemes have recently emerged that are able to perfectly reconstruct certain classes of parametric signals that are not bandlimited but characterized by a finite number of parameters. In this context, we derive novel sampling schemes for piecewise sinusoidal and polynomial signals. In particular, we show that a piecewise sinusoidal signal with arbitrarily high frequencies can be exactly recovered given certain conditions. These results are applied to parametric multiview data that are not bandlimited. We also focus on the problem of extracting regions (or layers) in multiview images that can be individually rendered free of aliasing. The problem is posed in a multidimensional variational framework using region competition. In extension to previous methods, layers are considered as multi-dimensional hypervolumes. Therefore the segmentation is done jointly over all the images and coherence is imposed throughout the data. However, instead of propagating active hypersurfaces, we derive a semi-parametric methodology that takes into account the constraints imposed by the camera setup and the occlusion ordering. The resulting framework is a global multi-dimensional region competition that is consistent in all the images and efficiently handles occlusions. We show the validity of the approach with captured light fields. Other special effects such as augmented reality and disocclusion of hidden objects are also demonstrated

    Variational Disparity Estimation Framework for Plenoptic Image

    Full text link
    This paper presents a computational framework for accurately estimating the disparity map of plenoptic images. The proposed framework is based on the variational principle and provides intrinsic sub-pixel precision. The light-field motion tensor introduced in the framework allows us to combine advanced robust data terms as well as provides explicit treatments for different color channels. A warping strategy is embedded in our framework for tackling the large displacement problem. We also show that by applying a simple regularization term and a guided median filtering, the accuracy of displacement field at occluded area could be greatly enhanced. We demonstrate the excellent performance of the proposed framework by intensive comparisons with the Lytro software and contemporary approaches on both synthetic and real-world datasets
    corecore