490 research outputs found

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Machine learning in Magnetic Resonance Imaging: Image reconstruction.

    Get PDF
    Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends

    Cardiovascular magnetic resonance artefacts

    Get PDF
    The multitude of applications offered by CMR make it an increasing popular modality to study the heart and the surrounding vessels. Nevertheless the anatomical complexity of the chest, together with cardiac and respiratory motion, and the fast flowing blood, present many challenges which can possibly translate into imaging artefacts. The literature is wide in terms of papers describing specific MR artefacts in great technical detail. In this review we attempt to summarise, in a language accessible to a clinical readership, some of the most common artefacts found in CMR applications. It begins with an introduction of the most common pulse sequences, and imaging techniques, followed by a brief section on typical cardiovascular applications. This leads to the main section on common CMR artefacts with examples, a short description of the mechanisms behind them, and possible solutions

    Efficient and Accurate Segmentation of Defects in Industrial CT Scans

    Get PDF
    Industrial computed tomography (CT) is an elementary tool for the non-destructive inspection of cast light-metal or plastic parts. A comprehensive testing not only helps to ensure the stability and durability of a part, it also allows reducing the rejection rate by supporting the optimization of the casting process and to save material (and weight) by producing equivalent but more filigree structures. With a CT scan it is theoretically possible to locate any defect in the part under examination and to exactly determine its shape, which in turn helps to draw conclusions about its harmfulness. However, most of the time the data quality is not good enough to allow segmenting the defects with simple filter-based methods which directly operate on the gray-values—especially when the inspection is expanded to the entire production. In such in-line inspection scenarios the tight cycle times further limit the available time for the acquisition of the CT scan, which renders them noisy and prone to various artifacts. In recent years, dramatic advances in deep learning (and convolutional neural networks in particular) made even the reliable detection of small objects in cluttered scenes possible. These methods are a promising approach to quickly yield a reliable and accurate defect segmentation even in unfavorable CT scans. The huge drawback: a lot of precisely labeled training data is required, which is utterly challenging to obtain—particularly in the case of the detection of tiny defects in huge, highly artifact-afflicted, three-dimensional voxel data sets. Hence, a significant part of this work deals with the acquisition of precisely labeled training data. Firstly, we consider facilitating the manual labeling process: our experts annotate on high-quality CT scans with a high spatial resolution and a high contrast resolution and we then transfer these labels to an aligned ``normal'' CT scan of the same part, which holds all the challenging aspects we expect in production use. Nonetheless, due to the indecisiveness of the labeling experts about what to annotate as defective, the labels remain fuzzy. Thus, we additionally explore different approaches to generate artificial training data, for which a precise ground truth can be computed. We find an accurate labeling to be crucial for a proper training. We evaluate (i) domain randomization which simulates a super-set of reality with simple transformations, (ii) generative models which are trained to produce samples of the real-world data distribution, and (iii) realistic simulations which capture the essential aspects of real CT scans. Here, we develop a fully automated simulation pipeline which provides us with an arbitrary amount of precisely labeled training data. First, we procedurally generate virtual cast parts in which we place reasonable artificial casting defects. Then, we realistically simulate CT scans which include typical CT artifacts like scatter, noise, cupping, and ring artifacts. Finally, we compute a precise ground truth by determining for each voxel the overlap with the defect mesh. To determine whether our realistically simulated CT data is eligible to serve as training data for machine learning methods, we compare the prediction performance of learning-based and non-learning-based defect recognition algorithms on the simulated data and on real CT scans. In an extensive evaluation, we compare our novel deep learning method to a baseline of image processing and traditional machine learning algorithms. This evaluation shows how much defect detection benefits from learning-based approaches. In particular, we compare (i) a filter-based anomaly detection method which finds defect indications by subtracting the original CT data from a generated ``defect-free'' version, (ii) a pixel-classification method which, based on densely extracted hand-designed features, lets a random forest decide about whether an image element is part of a defect or not, and (iii) a novel deep learning method which combines a U-Net-like encoder-decoder-pair of three-dimensional convolutions with an additional refinement step. The encoder-decoder-pair yields a high recall, which allows us to detect even very small defect instances. The refinement step yields a high precision by sorting out the false positive responses. We extensively evaluate these models on our realistically simulated CT scans as well as on real CT scans in terms of their probability of detection, which tells us at which probability a defect of a given size can be found in a CT scan of a given quality, and their intersection over union, which gives us information about how precise our segmentation mask is in general. While the learning-based methods clearly outperform the image processing method, the deep learning method in particular convinces by its inference speed and its prediction performance on challenging CT scans—as they, for example, occur in in-line scenarios. Finally, we further explore the possibilities and the limitations of the combination of our fully automated simulation pipeline and our deep learning model. With the deep learning method yielding reliable results for CT scans of low data quality, we examine by how much we can reduce the scan time while still maintaining proper segmentation results. Then, we take a look on the transferability of the promising results to CT scans of parts of different materials and different manufacturing techniques, including plastic injection molding, iron casting, additive manufacturing, and composed multi-material parts. Each of these tasks comes with its own challenges like an increased artifact-level or different types of defects which occasionally are hard to detect even for the human eye. We tackle these challenges by employing our simulation pipeline to produce virtual counterparts that capture the tricky aspects and fine-tuning the deep learning method on this additional training data. With that we can tailor our approach towards specific tasks, achieving reliable and robust segmentation results even for challenging data. Lastly, we examine if the deep learning method, based on our realistically simulated training data, can be trained to distinguish between different types of defects—the reason why we require a precise segmentation in the first place—and we examine if the deep learning method can detect out-of-distribution data where its predictions become less trustworthy, i.e. an uncertainty estimation

    Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group

    Get PDF
    This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting
    • …
    corecore