150 research outputs found

    Measured impact of crooked traceroute

    Get PDF
    Data collected using traceroute-based algorithms underpins research into the Internetā€™s router-level topology, though it is possible to infer false links from this data. One source of false inference is the combination of per-flow load-balancing, in which more than one path is active from a given source to destination, and classic traceroute, which varies the UDP destination port number or ICMP checksum of successive probe packets, which can cause per-flow load-balancers to treat successive packets as distinct flows and forward them along different paths. Consequently, successive probe packets can solicit responses from unconnected routers, leading to the inference of false links. This paper examines the inaccuracies induced from such false inferences, both on macroscopic and ISP topology mapping. We collected macroscopic topology data to 365k destinations, with techniques that both do and do not try to capture load balancing phenomena.We then use alias resolution techniques to infer if a measurement artifact of classic traceroute induces a false router-level link. This technique detected that 2.71% and 0.76% of the links in our UDP and ICMP graphs were falsely inferred due to the presence of load-balancing. We conclude that most per-flow load-balancing does not induce false links when macroscopic topology is inferred using classic traceroute. The effect of false links on ISP topology mapping is possibly much worse, because the degrees of a tier-1 ISPā€™s routers derived from classic traceroute were inflated by a median factor of 2.9 as compared to those inferred with Paris traceroute

    Multilevel MDA-Lite Paris Traceroute

    Full text link
    Since its introduction in 2006-2007, Paris Traceroute and its Multipath Detection Algorithm (MDA) have been used to conduct well over a billion IP level multipath route traces from platforms such as M-Lab. Unfortunately, the MDA requires a large number of packets in order to trace an entire topology of load balanced paths between a source and a destination, which makes it undesirable for platforms that otherwise deploy Paris Traceroute, such as RIPE Atlas. In this paper we present a major update to the Paris Traceroute tool. Our contributions are: (1) MDA-Lite, an alternative to the MDA that significantly cuts overhead while maintaining a low failure probability; (2) Fakeroute, a simulator that enables validation of a multipath route tracing tool's adherence to its claimed failure probability bounds; (3) multilevel multipath route tracing, with, for the first time, a Traceroute tool that provides a router-level view of multipath routes; and (4) surveys at both the IP and router levels of multipath routing in the Internet, showing, among other things, that load balancing topologies have increased in size well beyond what has been previously reported as recently as 2016. The data and the software underlying these results are publicly available.Comment: Preprint. To appear in Proc. ACM Internet Measurement Conference 201

    SDN as Active Measurement Infrastructure

    Get PDF
    Active measurements are integral to the operation and management of networks, and invaluable to supporting empirical network research. Unfortunately, it is often cost-prohibitive and logistically difficult to widely deploy measurement nodes, especially in the core. In this work, we consider the feasibility of tightly integrating measurement within the infrastructure by using Software Defined Networks (SDNs). We introduce "SDN as Active Measurement Infrastructure" (SAAMI) to enable measurements to originate from any location where SDN is deployed, removing the need for dedicated measurement nodes and increasing vantage point diversity. We implement ping and traceroute using SAAMI, as well as a proof-of-concept custom measurement protocol to demonstrate the power and ease of SAAMI's open framework. Via a large-scale measurement campaign using SDN switches as vantage points, we show that SAAMI is accurate, scalable, and extensible

    A Graph Theoretic Perspective on Internet Topology Mapping

    Get PDF
    Understanding the topological characteristics of the Internet is an important research issue as the Internet grows with no central authority. Internet topology mapping studies help better understand the structure and dynamics of the Internet backbone. Knowing the underlying topology, researchers can better develop new protocols and services or fine-tune existing ones. Subnet-level Internet topology measurement studies involve three stages: topology collection, topology construction, and topology analysis. Each of these stages contains challenging tasks, especially when large-scale backbone topologies of millions of nodes are studied. In this dissertation, I first discuss issues in subnet-level Internet topology mapping and review state-of-the-art approaches to handle them. I propose a novel graph data indexing approach to to efficiently process large scale topology data. I then conduct an experimental study to understand how the responsiveness of routers has changed over the last decade and how it differs based on the probing mechanism. I then propose an efficient unresponsive resolution approach by incorporating our structural graph indexing technique. Finally, I introduce Cheleby, an integrated Internet topology mapping system. Cheleby first dynamically probes observed subnetworks using a team of PlanetLab nodes around the world to obtain comprehensive backbone topologies. Then, it utilizes efficient algorithms to resolve subnets, IP aliases, and unresponsive routers in the collected data sets to construct comprehensive subnet-level topologies. Sample topologies are provided at http://cheleby.cse.unr.edu

    Per-hop Internet Measurement Protocols

    Get PDF
    Accurately measuring per-hop packet dynamics on an Internet path is difficult. Currently available techniques have many well-known limitations that can make it difficult to accurately measure per-hop packet dynamics. Much of the difficulty of per-hop measurement is due to the lack of protocol support available to measure an Internet path on a per-hop basis. This thesis classifies common weaknesses and describes a protocol for per-hop measurement of Internet packet dynamics, known as the IP Measurement Protocol, or IPMP. With IPMP, a specially formed probe packet collects information from intermediate routers on the packet's dynamics as the packet is forwarded. This information includes an IP address from the interface that received the packet, a timestamp that records when the packet was received, and a counter that records the arrival order of echo packets belonging to the same flow. Probing a path with IPMP allows the topology of the path to be directly determined, and for direct measurement of per-hop behaviours such as queueing delay, jitter, reordering, and loss. This is useful in many operational situations, as well as for researchers in characterising Internet behaviour. IPMP's design goals of being tightly constrained and easy to implement are tested by building implementations in hardware and software. Implementations of IPMP presented in this thesis show that an IPMP measurement probe can be processed in hardware without delaying the packet, and processed in software with little overhead. This thesis presents IPMP-based measurement techniques for measuring per-hop packet delay, jitter, loss, reordering, and capacity that are more robust, require less probes to be sent, and are potentially more accurate and convenient than corresponding measurement techniques that do not use IPMP

    Rusty Clusters? Dusting an IPv6 Research Foundation

    Get PDF
    The long-running IPv6 Hitlist service is an important foundation for IPv6 measurement studies. It helps to overcome infeasible, complete address space scans by collecting valuable, unbiased IPv6 address candidates and regularly testing their responsiveness. However, the Internet itself is a quickly changing ecosystem that can affect longrunning services, potentially inducing biases and obscurities into ongoing data collection means. Frequent analyses but also updates are necessary to enable a valuable service to the community. In this paper, we show that the existing hitlist is highly impacted by the Great Firewall of China, and we offer a cleaned view on the development of responsive addresses. While the accumulated input shows an increasing bias towards some networks, the cleaned set of responsive addresses is well distributed and shows a steady increase. Although it is a best practice to remove aliased prefixes from IPv6 hitlists, we show that this also removes major content delivery networks. More than 98% of all IPv6 addresses announced by Fastly were labeled as aliased and Cloudflare prefixes hosting more than 10M domains were excluded. Depending on the hitlist usage, e.g., higher layer protocol scans, inclusion of addresses from these providers can be valuable. Lastly, we evaluate different new address candidate sources, including target generation algorithms to improve the coverage of the current IPv6 Hitlist. We show that a combination of different methodologies is able to identify 5.6M new, responsive addresses. This accounts for an increase by 174% and combined with the current IPv6 Hitlist, we identify 8.8M responsive addresses
    • ā€¦
    corecore