1,932 research outputs found

    Towards Vulnerability Discovery Using Staged Program Analysis

    Full text link
    Eliminating vulnerabilities from low-level code is vital for securing software. Static analysis is a promising approach for discovering vulnerabilities since it can provide developers early feedback on the code they write. But, it presents multiple challenges not the least of which is understanding what makes a bug exploitable and conveying this information to the developer. In this paper, we present the design and implementation of a practical vulnerability assessment framework, called Melange. Melange performs data and control flow analysis to diagnose potential security bugs, and outputs well-formatted bug reports that help developers understand and fix security bugs. Based on the intuition that real-world vulnerabilities manifest themselves across multiple parts of a program, Melange performs both local and global analyses. To scale up to large programs, global analysis is demand-driven. Our prototype detects multiple vulnerability classes in C and C++ code including type confusion, and garbage memory reads. We have evaluated Melange extensively. Our case studies show that Melange scales up to large codebases such as Chromium, is easy-to-use, and most importantly, capable of discovering vulnerabilities in real-world code. Our findings indicate that static analysis is a viable reinforcement to the software testing tool set.Comment: A revised version to appear in the proceedings of the 13th conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 201

    A Non-Null Annotation Inferencer for Java Bytecode

    Get PDF
    We present a non-null annotations inferencer for the Java bytecode language. We previously proposed an analysis to infer non-null annotations and proved it soundness and completeness with respect to a state of the art type system. This paper proposes extensions to our former analysis in order to deal with the Java bytecode language. We have implemented both analyses and compared their behaviour on several benchmarks. The results show a substantial improvement in the precision and, despite being a whole-program analysis, production applications can be analyzed within minutes

    Type Classes for Lightweight Substructural Types

    Full text link
    Linear and substructural types are powerful tools, but adding them to standard functional programming languages often means introducing extra annotations and typing machinery. We propose a lightweight substructural type system design that recasts the structural rules of weakening and contraction as type classes; we demonstrate this design in a prototype language, Clamp. Clamp supports polymorphic substructural types as well as an expressive system of mutable references. At the same time, it adds little additional overhead to a standard Damas-Hindley-Milner type system enriched with type classes. We have established type safety for the core model and implemented a type checker with type inference in Haskell.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441
    corecore