6,348 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    Approximate performability and dependability analysis using generalized stochastic Petri Nets

    Get PDF
    Since current day fault-tolerant and distributed computer and communication systems tend to be large and complex, their corresponding performability models will suffer from the same characteristics. Therefore, calculating performability measures from these models is a difficult and time-consuming task.\ud \ud To alleviate the largeness and complexity problem to some extent we use generalized stochastic Petri nets to describe to models and to automatically generate the underlying Markov reward models. Still however, many models cannot be solved with the current numerical techniques, although they are conveniently and often compactly described.\ud \ud In this paper we discuss two heuristic state space truncation techniques that allow us to obtain very good approximations for the steady-state performability while only assessing a few percent of the states of the untruncated model. For a class of reversible models we derive explicit lower and upper bounds on the exact steady-state performability. For a much wider class of models a truncation theorem exists that allows one to obtain bounds for the error made in the truncation. We discuss this theorem in the context of approximate performability models and comment on its applicability. For all the proposed truncation techniques we present examples showing their usefulness

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Sequential Decision-Making for Drug Design: Towards closed-loop drug design

    Get PDF
    Drug design is a process of trial and error to design molecules with a desired response toward a biological target, with the ultimate goal of finding a new medication. It is estimated to be up to 10^{60} molecules that are of potential interest as drugs, making it a difficult problem to find suitable molecules. A crucial part of drug design is to design and determine what molecules should be experimentally tested, to determine their activity toward the biological target. To experimentally test the properties of a molecule, it has to be successfully made, often requiring a sequence of reactions to obtain the desired product. Machine learning can be utilized to predict the outcome of a reaction, helping to find successful reactions, but requires data for the reaction type of interest. This thesis presents a work that combinatorially investigates the use of active learning to acquire training data for reaching a certain level of predictive ability in predicting whether a reaction is successful or not. However, only a limited number of molecules can often be synthesized every time. Therefore, another line of work in this thesis investigates which designed molecules should be experimentally tested, given a budget of experiments, to sequentially acquire new knowledge. This is formulated as a multi-armed bandit problem and we propose an algorithm to solve this problem. To suggest potential drug molecules to choose from, recent advances in machine learning have also enabled the use of generative models to design novel molecules with certain predicted properties. Previous work has formulated this as a reinforcement learning problem with success in designing and optimizing molecules with drug-like properties. This thesis presents a systematic comparison of different reinforcement learning algorithms for string-based generation of drug molecules. This includes a study of different ways of learning from previous and current batches of samples during the iterative generation
    corecore