63,551 research outputs found

    Optimal Point Placement for Mesh Smoothing

    Full text link
    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.Comment: 12 pages, 3 figures. A preliminary version of this paper was presented at the 8th ACM/SIAM Symp. on Discrete Algorithms (SODA '97). This is the final version, and will appear in a special issue of J. Algorithms for papers from SODA '9

    Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback

    Full text link
    We consider distributed consensus and vehicular formation control problems. Specifically we address the question of whether local feedback is sufficient to maintain coherence in large-scale networks subject to stochastic disturbances. We define macroscopic performance measures which are global quantities that capture the notion of coherence; a notion of global order that quantifies how closely the formation resembles a solid object. We consider how these measures scale asymptotically with network size in the topologies of regular lattices in 1, 2 and higher dimensions, with vehicular platoons corresponding to the 1 dimensional case. A common phenomenon appears where a higher spatial dimension implies a more favorable scaling of coherence measures, with a dimensions of 3 being necessary to achieve coherence in consensus and vehicular formations under certain conditions. In particular, we show that it is impossible to have large coherent one dimensional vehicular platoons with only local feedback. We analyze these effects in terms of the underlying energetic modes of motion, showing that they take the form of large temporal and spatial scales resulting in an accordion-like motion of formations. A conclusion can be drawn that in low spatial dimensions, local feedback is unable to regulate large-scale disturbances, but it can in higher spatial dimensions. This phenomenon is distinct from, and unrelated to string instability issues which are commonly encountered in control problems for automated highways.Comment: To appear in IEEE Trans. Automat. Control; 15 pages, 2 figure

    A domain decomposition matrix-free method for global linear stability

    Get PDF
    This work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains of the entire geometry combined with a multidomain linearized Direct Numerical Finite difference simulations based on an influence matrix for partitioning are adopted. The method is illustrated by three benchmark problems: the lid-driven cavity, the square cylinder and the open cavity flow. The efficiency of the method to extract large-scale structures in a multidomain framework is emphasized. The possibility to use subset of the full domain to recover the perturbation associated with the entire flow field is also highlighted. Such a method appears thus a promising tool to deal with large computational domains and three-dimensionality within a parallel architecture
    • …
    corecore