202,073 research outputs found

    The Laminar Architecture of Visual Cortex and Image Processing Technology

    Full text link
    The mammalian neocortex is organized into layers which include circuits that form functional columns in cortical maps. A major unsolved problem concerns how bottom-up, top-down, and horizontal interactions are organized within cortical layers to generate adaptive behaviors. This article summarizes a model, called the LAMINART model, of how these interactions help visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex stably grows and tunes its circuits to match environmental constraints. Such Laminar Computing completes perceptual groupings that realize the property of Analog Coherence, whereby winning groupings bind together their inducing features without losing their ability to represent analog values of these features. Laminar Computing also efficiently unifies the computational requirements of preattentive filtering and grouping with those of attentional selection. It hereby shows how Adaptive Resonance Theory (ART) principles may be realized within the laminar circuits of neocortex. Applications include boundary segmentation and surface filling-in algorithms for processing Synthetic Aperture Radar images.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-95-1-0657

    Reference Nodes Selection for Anchor-Free Localization in Wireless Sensor Networks

    Get PDF
    Dizertační práce se zabývá návrhem nového bezkotevního lokalizačního algoritmu sloužícího pro výpočet pozice uzlů v bezdrátových senzorových sítích. Provedené studie ukázaly, že dosavadní bezkotevní lokalizační algoritmy, pracující v paralelním režimu, dosahují malých lokalizačních chyb. Jejich nevýhodou ovšem je, že při sestavení množiny referenčních uzlu spotřebovávají daleko větší množství energie než algoritmy pracující v inkrementálním režimu. Paralelní lokalizační algoritmy využívají pro určení pozice referenční uzly nacházející se na protilehlých hranách bezdrátové sítě. Nový lokalizační algoritmus označený jako BRL (Boundary Recognition aided Localization) je založen na myšlence decentralizovaně detekovat uzly ležící na hranici síti a pouze z této množiny vybrat potřebný počet referenčních uzlu. Pomocí navrženého přístupu lze znažně snížit množství energie spotřebované v průběhu procesu výběru referenčních uzlů v senzorovém poli. Dalším přínosem ke snížení energetických nároku a zároveň zachování nízké lokalizační chyby je využití procesu multilaterace se třemi, eventuálně čtyřmi referenčními body. V rámci práce byly provedeny simulace několika dílčích algoritmu a jejich funkčnost byla ověřena experimentálně v reálné senzorové síti. Navržený algoritmus BRL byl porovnán z hlediska lokalizační chyby a počtu zpracovaných paketů s několika známými lokalizačními algoritmy. Výsledky simulací dokázaly, že navržený algoritmus představuje efektivní řešení pro přesnou a zároveň nízkoenergetickou lokalizaci uzlů v bezdrátových senzorových sítích.The doctoral thesis is focused on a design of a novel anchor free localization algorithm for wireless sensor networks. As introduction, the incremental and concurrent anchor free localization algorithms are presented and their performance is compared. It was found that contemporary anchor free localization algorithms working in the concurrent manner achieve a low localization error, but dissipate signicant energy reserves. A new Boundary Recognition Aided Localization algorithm presented in this thesis is based on an idea to recognize the nodes placed on the boundary of network and thus reduce the number of transmission realized during the reference nodes selection phase of the algorithm. For the position estimation, the algorithm employs the multilateration technique that work eectively with the low number of the reference nodes. Proposed algorithms are tested through the simulations and validated by the real experiment with the wireless sensor network. The novel Boundary Recognition Aided Localization algorithm is compared with the known algorithms in terms of localization error and the communication cost. The results show that the novel algorithm presents powerful solution for the anchor free localization.

    Quantifying the Impact of Parameter Tuning on Nature-Inspired Algorithms

    Full text link
    The problem of parameterization is often central to the effective deployment of nature-inspired algorithms. However, finding the optimal set of parameter values for a combination of problem instance and solution method is highly challenging, and few concrete guidelines exist on how and when such tuning may be performed. Previous work tends to either focus on a specific algorithm or use benchmark problems, and both of these restrictions limit the applicability of any findings. Here, we examine a number of different algorithms, and study them in a "problem agnostic" fashion (i.e., one that is not tied to specific instances) by considering their performance on fitness landscapes with varying characteristics. Using this approach, we make a number of observations on which algorithms may (or may not) benefit from tuning, and in which specific circumstances.Comment: 8 pages, 7 figures. Accepted at the European Conference on Artificial Life (ECAL) 2013, Taormina, Ital

    Distributed Recognition of Reference Nodes for Wireless Sensor Network Localization

    Get PDF
    All known localization techniques for wireless sensor and ad-hoc networks require certain set of reference nodes being used for position estimation. The anchor-free techniques in contrast to anchor-based do not require reference nodes called anchors to be placed in the network area before localization operation itself, but they can establish own reference coordinate system to be used for the relative position estimation. We observed that contemporary anchor-free localization algorithms achieve a low localization error, but dissipate significant energy reserves during the recognition of reference nodes used for the position estimation. Therefore, we have proposed the optimized anchor-free localization algorithm referred to as BRL (Boundary Recognition aided Localization), which achieves a low localization error and mainly reduces the communication cost of the reference nodes recognition phase. The proposed BRL algorithm was investigated throughout the extensive simulations on the database of networks with the different number of nodes and densities and was compared in terms of communication cost and localization error with the known related algorithms such as AFL and CRP. Through the extensive simulations we have observed network conditions where novel BRL algorithm excels in comparison with the state of art
    corecore