570 research outputs found

    On some symmetric multidimensional continued fraction algorithms

    Full text link
    We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted version of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For some other algorithms, which are known to have a unique invariant measure absolutely continuous with respect to Lebesgue measure, the invariant domain found by this method seems to have a fractal boundary, and it is unclear that it is of positive measure.Comment: Version 1: 22 pages, 12 figures. Version 2: new section on Cassaigne algorithm, 25 pages, 15 figures. Version 3: corrections during review proces

    Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes: Beyond Betti Numbers and Collapsing Sequences

    Get PDF
    We present efficient algorithms for solving systems of linear equations in 1-Laplacians of well-shaped simplicial complexes. 1-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to higher-dimensional simplicial complexes and play a key role in computational topology and topological data analysis. Previously, nearly-linear time solvers were developed for simplicial complexes with known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in R3 (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA’2014], Black, Maxwell, Nayyeri, and Winkelman [SODA’2022], Black and Nayyeri [ICALP’2022]). Furthermore, Nested Dissection provides quadratic time solvers for more general systems with nonzero structures representing well-shaped simplicial complexes embedded in R3. We generalize the specialized solvers for 1-Laplacians to simplicial complexes with additional geometric structures but without collapsing sequences and bounded Betti numbers, and we improve the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1) each individual simplex has a bounded aspect ratio, and (2) they can be divided into “disjoint” and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng, Schwieterman, and Zhang [STOC’2018]).ISSN:1868-896

    Efficient 11-Laplacian Solvers for Well-Shaped Simplicial Complexes: Beyond Betti Numbers and Collapsing Sequences

    Full text link
    We present efficient algorithms for approximately solving systems of linear equations in 11-Laplacians of well-shaped simplicial complexes up to high precision. 11-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to higher-dimensional simplicial complexes and play a key role in computational topology and topological data analysis. Previously, nearly-linear time approximate solvers were developed for simplicial complexes with known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in R3\mathbb{R}^3 (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA'2014], Black, Maxwell, Nayyeri, and Winkelman [SODA'2022], Black and Nayyeri [ICALP'2022]). Furthermore, Nested Dissection provides quadratic time exact solvers for more general systems with nonzero structures representing well-shaped simplicial complexes embedded in R3\mathbb{R}^3. We generalize the specialized solvers for 11-Laplacians to simplicial complexes with additional geometric structures but without collapsing sequences and bounded Betti numbers, and we improve the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1) each individual simplex has a bounded aspect ratio, and (2) they can be divided into "disjoint" and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng, Schwieterman, and Zhang [STOC'2018]).Comment: 45 pages, 3 figures, ESA 202

    Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media

    Full text link
    In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).Comment: 28 page
    • …
    corecore