56 research outputs found

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2.

    Get PDF
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Topics in Graph Algorithms: Structural Results and Algorithmic Techniques, with Applications

    Get PDF
    Coping with computational intractability has inspired the development of a variety of algorithmic techniques. The main challenge has usually been the design of polynomial time algorithms for NP-complete problems in a way that guarantees some, often worst-case, satisfactory performance when compared to exact (optimal) solutions. We mainly study some emergent techniques that help to bridge the gap between computational intractability and practicality. We present results that lead to better exact and approximation algorithms and better implementations. The problems considered in this dissertation share much in common structurally, and have applications in several scientific domains, including circuit design, network reliability, and bioinformatics. We begin by considering the relationship between graph coloring and the immersion order, a well-quasi-order defined on the set of finite graphs. We establish several (structural) results and discuss their potential algorithmic consequences. We discuss graph metrics such as treewidth and pathwidth. Treewidth is well studied, mainly because many problems that are NP-hard in general have polynomial time algorithms when restricted to graphs of bounded treewidth. Pathwidth has many applications ranging from circuit layout to natural language processing. We present a linear time algorithm to approximate the pathwidth of planar graphs that have a fixed disk dimension. We consider the face cover problem, which has potential applications in facilities location and logistics. Being fixed-parameter tractable, we develop an algorithm that solves it in time O(5k + n2) where k is the input parameter. This is a notable improvement over the previous best known algorithm, which runs in O(8kn). In addition to the structural and algorithmic results, this text tries to illustrate the practicality of fixed-parameter algorithms. This is achieved by implementing some algorithms for the vertex cover problem, and conducting experiments on real data sets. Our experiments advocate the viewpoint that, for many practical purposes, exact solutions of some NP-complete problems are affordable

    Partitions and Coverings of Trees by Bounded-Degree Subtrees

    Full text link
    This paper addresses the following questions for a given tree TT and integer d≥2d\geq2: (1) What is the minimum number of degree-dd subtrees that partition E(T)E(T)? (2) What is the minimum number of degree-dd subtrees that cover E(T)E(T)? We answer the first question by providing an explicit formula for the minimum number of subtrees, and we describe a linear time algorithm that finds the corresponding partition. For the second question, we present a polynomial time algorithm that computes a minimum covering. We then establish a tight bound on the number of subtrees in coverings of trees with given maximum degree and pathwidth. Our results show that pathwidth is the right parameter to consider when studying coverings of trees by degree-3 subtrees. We briefly consider coverings of general graphs by connected subgraphs of bounded degree

    Contraction Obstructions for Connected Graph Searching

    Full text link
    We consider the connected variant of the classic mixed search game where, in each search step, cleaned edges form a connected subgraph. We consider graph classes with bounded connected (and monotone) mixed search number and we deal with the question whether the obstruction set, with respect of the contraction partial ordering, for those classes is finite. In general, there is no guarantee that those sets are finite, as graphs are not well quasi ordered under the contraction partial ordering relation. In this paper we provide the obstruction set for k=2k=2, where kk is the number of searchers we are allowed to use. This set is finite, it consists of 177 graphs and completely characterises the graphs with connected (and monotone) mixed search number at most 2. Our proof reveals that the "sense of direction" of an optimal search searching is important for connected search which is in contrast to the unconnected original case. We also give a double exponential lower bound on the size of the obstruction set for the classes where this set is finite

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201
    • …
    corecore