49,755 research outputs found

    Algorithms for Large-scale Whole Genome Association Analysis

    Full text link
    In order to associate complex traits with genetic polymorphisms, genome-wide association studies process huge datasets involving tens of thousands of individuals genotyped for millions of polymorphisms. When handling these datasets, which exceed the main memory of contemporary computers, one faces two distinct challenges: 1) Millions of polymorphisms come at the cost of hundreds of Gigabytes of genotype data, which can only be kept in secondary storage; 2) the relatedness of the test population is represented by a covariance matrix, which, for large populations, can only fit in the combined main memory of a distributed architecture. In this paper, we present solutions for both challenges: The genotype data is streamed from and to secondary storage using a double buffering technique, while the covariance matrix is kept across the main memory of a distributed memory system. We show that these methods sustain high-performance and allow the analysis of enormous datase

    A Quadratically Regularized Functional Canonical Correlation Analysis for Identifying the Global Structure of Pleiotropy with NGS Data

    Full text link
    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore multiple levels of representations of genetic variants, learn their internal patterns involved in the disease development, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new framework referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the nine competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and nine other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the nine other statistics.Comment: 64 pages including 12 figure

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Using GWAS Data to Identify Copy Number Variants Contributing to Common Complex Diseases

    Full text link
    Copy number variants (CNVs) account for more polymorphic base pairs in the human genome than do single nucleotide polymorphisms (SNPs). CNVs encompass genes as well as noncoding DNA, making these polymorphisms good candidates for functional variation. Consequently, most modern genome-wide association studies test CNVs along with SNPs, after inferring copy number status from the data generated by high-throughput genotyping platforms. Here we give an overview of CNV genomics in humans, highlighting patterns that inform methods for identifying CNVs. We describe how genotyping signals are used to identify CNVs and provide an overview of existing statistical models and methods used to infer location and carrier status from such data, especially the most commonly used methods exploring hybridization intensity. We compare the power of such methods with the alternative method of using tag SNPs to identify CNV carriers. As such methods are only powerful when applied to common CNVs, we describe two alternative approaches that can be informative for identifying rare CNVs contributing to disease risk. We focus particularly on methods identifying de novo CNVs and show that such methods can be more powerful than case-control designs. Finally we present some recommendations for identifying CNVs contributing to common complex disorders.Comment: Published in at http://dx.doi.org/10.1214/09-STS304 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore