1,630 research outputs found

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure

    Combinatorial Channel Signature Modulation for Wireless ad-hoc Networks

    Full text link
    In this paper we introduce a novel modulation and multiplexing method which facilitates highly efficient and simultaneous communication between multiple terminals in wireless ad-hoc networks. We term this method Combinatorial Channel Signature Modulation (CCSM). The CCSM method is particularly efficient in situations where communicating nodes operate in highly time dispersive environments. This is all achieved with a minimal MAC layer overhead, since all users are allowed to transmit and receive at the same time/frequency (full simultaneous duplex). The CCSM method has its roots in sparse modelling and the receiver is based on compressive sampling techniques. Towards this end, we develop a new low complexity algorithm termed Group Subspace Pursuit. Our analysis suggests that CCSM at least doubles the throughput when compared to the state-of-the art.Comment: 6 pages, 7 figures, to appear in IEEE International Conference on Communications ICC 201
    • …
    corecore