5,061 research outputs found

    Belief propagation : an asymptotically optimal algorithm for the random assignment problem

    Get PDF
    The random assignment problem asks for the minimum-cost perfect matching in the complete n×nn\times n bipartite graph \Knn with i.i.d. edge weights, say uniform on [0,1][0,1]. In a remarkable work by Aldous (2001), the optimal cost was shown to converge to ζ(2)\zeta(2) as nn\to\infty, as conjectured by M\'ezard and Parisi (1987) through the so-called cavity method. The latter also suggested a non-rigorous decentralized strategy for finding the optimum, which turned out to be an instance of the Belief Propagation (BP) heuristic discussed by Pearl (1987). In this paper we use the objective method to analyze the performance of BP as the size of the underlying graph becomes large. Specifically, we establish that the dynamic of BP on \Knn converges in distribution as nn\to\infty to an appropriately defined dynamic on the Poisson Weighted Infinite Tree, and we then prove correlation decay for this limiting dynamic. As a consequence, we obtain that BP finds an asymptotically correct assignment in O(n2)O(n^2) time only. This contrasts with both the worst-case upper bound for convergence of BP derived by Bayati, Shah and Sharma (2005) and the best-known computational cost of Θ(n3)\Theta(n^3) achieved by Edmonds and Karp's algorithm (1972).Comment: Mathematics of Operations Research (2009

    An Effective Feature Selection Method Based on Pair-Wise Feature Proximity for High Dimensional Low Sample Size Data

    Full text link
    Feature selection has been studied widely in the literature. However, the efficacy of the selection criteria for low sample size applications is neglected in most cases. Most of the existing feature selection criteria are based on the sample similarity. However, the distance measures become insignificant for high dimensional low sample size (HDLSS) data. Moreover, the variance of a feature with a few samples is pointless unless it represents the data distribution efficiently. Instead of looking at the samples in groups, we evaluate their efficiency based on pairwise fashion. In our investigation, we noticed that considering a pair of samples at a time and selecting the features that bring them closer or put them far away is a better choice for feature selection. Experimental results on benchmark data sets demonstrate the effectiveness of the proposed method with low sample size, which outperforms many other state-of-the-art feature selection methods.Comment: European Signal Processing Conference 201

    Modulation-mode assignment for SVD-assisted and iteratively detected downlink multiuser MIMO transmission schemes

    Get PDF
    In this contribution we jointly optimize the number of multiple-input multiple-output (MIMO) layers and the number of bits per symbol within an iteratively-detected multiuser MIMO downlink (DL) transmission scheme under the constraint of a given fixed data throughput and integrity. Instead of treating all the users jointly as in zero-forcing (ZF) multiuser transmission techniques, the investigated singular value decomposition (SVD) assisted DL multiuser MIMO system takes the individual user's channel characteristics into account. In analogy to bit-interleaved coded irregular modulation, we introduce a MIMO-BICM scheme, where different user-specific signal constellations and mapping arrangement were used within a single codeword. Extrinsic information transfer (EXIT) charts are used for analyzing and optimizing the convergence behaviour of the iterative demapping and decoding. Our results show that in order to achieve the best bit-error rate, not necessarily all user-specific MIMO layers have to be activate

    Belief-Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions

    Full text link
    We consider the general problem of finding the minimum weight \bm-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.Comment: 28 pages, 2 figures. Submitted to SIAM journal on Discrete Mathematics on March 19, 2009; accepted for publication (in revised form) August 30, 2010; published electronically July 1, 201

    Approximation Algorithms for Stochastic Boolean Function Evaluation and Stochastic Submodular Set Cover

    Full text link
    Stochastic Boolean Function Evaluation is the problem of determining the value of a given Boolean function f on an unknown input x, when each bit of x_i of x can only be determined by paying an associated cost c_i. The assumption is that x is drawn from a given product distribution, and the goal is to minimize the expected cost. This problem has been studied in Operations Research, where it is known as "sequential testing" of Boolean functions. It has also been studied in learning theory in the context of learning with attribute costs. We consider the general problem of developing approximation algorithms for Stochastic Boolean Function Evaluation. We give a 3-approximation algorithm for evaluating Boolean linear threshold formulas. We also present an approximation algorithm for evaluating CDNF formulas (and decision trees) achieving a factor of O(log kd), where k is the number of terms in the DNF formula, and d is the number of clauses in the CNF formula. In addition, we present approximation algorithms for simultaneous evaluation of linear threshold functions, and for ranking of linear functions. Our function evaluation algorithms are based on reductions to the Stochastic Submodular Set Cover (SSSC) problem. This problem was introduced by Golovin and Krause. They presented an approximation algorithm for the problem, called Adaptive Greedy. Our main technical contribution is a new approximation algorithm for the SSSC problem, which we call Adaptive Dual Greedy. It is an extension of the Dual Greedy algorithm for Submodular Set Cover due to Fujito, which is a generalization of Hochbaum's algorithm for the classical Set Cover Problem. We also give a new bound on the approximation achieved by the Adaptive Greedy algorithm of Golovin and Krause

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs
    corecore