60 research outputs found

    Surface modeling and rendering with line segments

    Get PDF
    Master'sMASTER OF SCIENC

    Pixelating Vector Art

    Get PDF
    Pixel art is a popular style of digital art often found in video games. It is typically characterized by its low resolution and use of limited colour palettes. Pixel art is created manually with little automation because it requires attention to pixel-level details. Working with individual pixels is a challenging and abstract task, whereas manipulating higher-level objects in vector graphics is much more intuitive. However, it is difficult to bridge this gap because although many rasterization algorithms exist, they are not well-suited for the particular needs of pixel artists, particularly at low resolutions. In this thesis, we introduce a class of rasterization algorithms called pixelation that is tailored to pixel art needs. We describe how our algorithm suppresses artifacts when pixelating vector paths and preserves shape-level features when pixelating geometric primitives. We also developed methods inspired by pixel art for drawing lines and angles more effectively at low resolutions. We compared our results to rasterization algorithms, rasterizers used in commercial software, and human subjects---both amateurs and pixel artists. Through formal analyses of our user study studies and a close collaboration with professional pixel artists, we showed that, in general, our pixelation algorithms produce more visually appealing results than na\"{i}ve rasterization algorithms do

    Антиаліайзинг зображення кривих другого порядку, заданих загальним рівнянням

    Get PDF
    Запропоновано новий підхід до антиаліайзингу кривих другого порядку за умови, що вони задані загальним рівнянням. Метод характеризується простотою апаратної реалізації

    A Human Body Modelling System for Motion Studies

    Get PDF
    The need to visualize and interpret human body movement data from experiments and simulations has led to the development of a new three-dimensional representation for the human body. Based on a skeleton of joints and segments, the model is manipulated by specifying joint positions with respect to arbitrary frames of reference. The external form is modelled as the union of overlapping spheres which define the surface of each segment. The properties of the segment and sphere model include: an ability to utilize any connected portion of the body in order to examine selected movements without computing movements of undesired parts, a naming mechanism for describing parts within a segment, and a collision detection algorithm for finding contacts or illegal intersections of the body with itself or other objects. Several display algorithms are possible, including inexpensive hidden surface removal. The spherical body model can also be easily combined with planar polygon object environments

    Антиаліайзинг зображення кривих другого порядку заданих загальним рівнянням

    Get PDF
    The new approach is Offered to antialiayzing crooked second order provided that they are given by general equation. Method is characterized by simplicity to hardware realizationПредложен новый подход к антиалиайзингу кривых второго порядка при условии, что они заданы общим уравнением. Метод характеризуется простотой аппаратной реализацииЗапропоновано новий підхід до антиаліайзингу кривих другого порядку за умови, що вони задані загальним рівнянням. Метод характеризується простотою апаратної реалізаці

    The development of perceptual averaging: learning what to do, not just how to do it

    Get PDF
    The mature visual system condenses complex scenes into simple summary statistics (e.g., average size, location, orientation, etc.). However, children, often perform poorly on perceptual averaging tasks. Children's difficulties are typically thought to represent the suboptimal implementation of an adult-like strategy. This paper examines another possibility: that children actually make decisions in a qualitatively different way to adults (optimal implementation of a non-ideal strategy). Ninety children (6-7, 8-9, 10-11 years) and 30 adults were asked to locate the middle of randomly generated dot-clouds. Nine plausible decision strategies were formulated, and each was fitted to observers' trial-by-trial response data (Reverse Correlation). When the number of visual elements was low (N < 6), children used a qualitatively different decision strategy from adults: appearing to "join up the dots" and locate the gravitational center of the enclosing shape. Given denser displays, both children and adults used an ideal strategy of arithmetically averaging individual points. Accounting for this difference in decision strategy explained 29% of children's lower precision. These findings suggest that children are not simply suboptimal at performing adult-like computations, but may at times use sensible, but qualitatively different strategies to make perceptual judgments. Learning which strategy is best in which circumstance might be an important driving factor of perceptual development

    Freehand Sketch Recognition for Computer-Assisted Language Learning of Written East Asian Languages

    Get PDF
    One of the challenges students face in studying an East Asian (EA) language (e.g., Chinese, Japanese, and Korean) as a second language is mastering their selected language’s written component. This is especially true for students with native fluency of English and deficient written fluency of another EA language. In order to alleviate the steep learning curve inherent in the properties of EA languages’ complicated writing scripts, language instructors conventionally introduce various written techniques such as stroke order and direction to allow students to study writing scripts in a systematic fashion. Yet, despite the advantages gained from written technique instruction, the physical presence of the language instructor in conventional instruction is still highly desirable during the learning process; not only does it allow instructors to offer valuable real-time critique and feedback interaction on students’ writings, but it also allows instructors to correct students’ bad writing habits that would impede mastery of the written language if not caught early in the learning process. The current generation of computer-assisted language learning (CALL) applications specific to written EA languages have therefore strived to incorporate writing-capable modalities in order to allow students to emulate their studies outside the classroom setting. Several factors such as constrained writing styles, and weak feedback and assessment capabilities limit these existing applications and their employed techniques from closely mimicking the benefits that language instructors continue to offer. In this thesis, I describe my geometric-based sketch recognition approach to several writing scripts in the EA languages while addressing the issues that plague existing CALL applications and the handwriting recognition techniques that they utilize. The approach takes advantage of A Language to Describe, Display, and Editing in Sketch Recognition (LADDER) framework to provide users with valuable feedback and assessment that not only recognizes the visual correctness of students’ written EA Language writings, but also critiques the technical correctness of their stroke order and direction. Furthermore, my approach provides recognition independent of writing style that allows students to learn with natural writing through size- and amount-independence, thus bridging the gap between beginner applications that only recognize single-square input and expert tools that lack written technique critique
    corecore