350 research outputs found

    Analysis and optimization of highly reliable systems

    Get PDF
    In the field of network design, the survivability property enables the network to maintain a certain level of network connectivity and quality of service under failure conditions. In this thesis, survivability aspects of communication systems are studied. Aspects of reliability and vulnerability of network design are also addressed. The contributions are three-fold. First, a Hop Constrained node Survivable Network Design Problem (HCSNDP) with optional (Steiner) nodes is modelled. This kind of problems are N P-Hard. An exact integer linear model is built, focused on networks represented by graphs without rooted demands, considering costs in arcs and in Steiner nodes. In addition to the exact model, the calculation of lower and upper bounds to the optimal solution is included. Models were tested over several graphs and instances, in order to validate it in cases with known solution. An Approximation Algorithm is also developed in order to address a particular case of SNDP: the Two Node Survivable Star Problem (2NCSP) with optional nodes. This problem belongs to the class of N P-Hard computational problems too. Second, the research is focused on cascading failures and target/random attacks. The Graph Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. A fixed number of individuals for protection can be chosen, and a non-protected target node immediately destroys all reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network. This problem belongs to the N P-Hard class. A mathematical programming formulation is introduced and exact resolution for small instances as well as lower and upper bounds to the optimal solution. In addition to exact methods, we address the GFP by several approaches: metaheuristics, approximation algorithms, polytime methods for specific instances and exact methods in exponential time. Finally, the concept of separability in stochastic binary systems is here introduced. Stochastic Binary Systems (SBS) represent a mathematical model of a multi-component on-off system subject to independent failures. The reliability evaluation of an SBS belongs to the N P-Hard class. Therefore, we fully characterize separable systems using Han-Banach separation theorem for convex sets. Using this new concept of separable systems and Markov inequality, reliability bounds are provided for arbitrary SBS

    Routing cost optimization in Multi Overlay Robust Networks

    Get PDF
    In the present work we solve the problem of data flow routing in Multi-Overlay Robust Networks (MORN) while aiming to minimize its routing cost. This kind of networks are typically IP/MPLS Data Network deployed over an SDH/DWDM transport infrastructure. Through the IP/MPLSMulti-Layer Data Network different kinds of services having a wide variety of quality of service requirements are delivered. Those services are being transported by an SDH/DWDM Transport Network which has different transport capacities. In this network, routing cost depends not only on the assigned transport capacity but also in the technology that it uses. Our problem seeks not only to route data flows through Data and Transport Networks but also to optimize routing costs and the reliability of the network. The inputs of our problem are the topology of the Data and Transport networks as well as the budget that the network operator has in order to improve its network routing costs and reliability. We will assume that the operator can only use that budget for installing new links between existing transport nodes. The output of the problem is the data flow routing in the Data and Transport Networks and its associated cost. Routing in the Transport Network is calculated not only in the nominal scenario - when all the Transport Network links are up and running - but also in each single transport link failure case.En el presente trabajo se resuelve el problema de rutear flujos de datos en una Red Multi- Capa Robusta (MORN por sus siglas en inglés), mientras que se trata de minimizar el costo asociado a su ruteo. Este tipo de redes son generalmente redes de datos IP/MPLS desplegadas sobre una infraestructura de transporte SDH/DWDM. Sobre la red de datos IP/MPLS se cursan distintos servicios con diferentes requerimientos de calidad de servicio (QoS). Los servicios de la Red de Datos son transportados por la red SDH/DWDM la cual tiene distintas capacidades de transporte. En éste tipo de redes el costo asociado al transporte depende no solo de la capacidad asignada para el transporte sino que también depende de la tecncología utilizada para transportar dicha capacidad. En el problema no sólo se busca enrutar flujos de datos a través de las Redes de Datos y Transporte sino que también se busca optimizar los costos de ruteo y la confiabilidad de la red. Como punto de partida, el problema toma como información la topología de las Redes de Datos y Transporte así como cierto presupuesto que el operador de la red posee para poder mejorar los costos de ruteo y la confiabilidad de su red. Asumiremos que dicho presupuesto solo puede ser utilizado para instalar nuevos enlaces entre los nodos existentes en la Red de Transporte. La salida del problema es el ruteo de los flujos de datos tanto en la Red de Datos como en la de Transporte, así como el costo asociado a dicho ruteo. El ruteo en la Red de Transporte se calcula no solo en el escenario nominal - cuando todos los enlaces de la Red de Transporte están funcionales - sino que también en cada escenario de falla simple en sus enlaces

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    The distance-based critical node detection problem : models and algorithms

    Get PDF
    In the wake of terrorism and natural disasters, assessing networked systems for vulnerability to failures that arise from these events is essential to maintaining the operations of the systems. This is very crucial given the heavy dependence of daily social and economic activities on networked systems such as transport, telecommunication and energy networks as well as the interdependence of these networks. In this thesis, we explore methods to assess the vulnerability of networked systems to element failures which employ connectivity as the performance measure for vulnerability. The associated optimisation problem termed the critical node (edge) detection problem seeks to identify a subset of nodes (edges) of a network whose deletion (failure) optimises a network connectivity objective. Traditional connectivity measures employed in most studies of the critical node detection problem overlook internal cohesiveness of networks and the extent of connectivity in the network. This limits the effectiveness of the developed methods in uncovering vulnerability with regards to network connectivity. Our work therefore focuses on distance-based connectivity which is a fairly new class of connectivity introduced for studying the critical node detection problem to overcome the limitations of traditional connectivity measures. In Chapter 1, we provide an introduction outlining the motivations and the methods related to our study. In Chapter 2, we review the literature on the critical node detection problem as well as its application areas and related problems. Following this, we formally introduce the distance-based critical node detection problem in Chapter 3 where we propose new integer programming models for the case of hop-based distances and an efficient algorithm for the separation problems associated with the models. We also propose two families of valid inequalities. In Chapter 4, we consider the distance-based critical node detection problem using a heuristic approach in which we propose a centrality-based heuristic that employs a backbone crossover and a centrality-based neighbourhood search. In Chapter 5, we present generalisations of the methods proposed in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the problem which we term the distance based critical edge detection problem. Throughout Chapters 3, 4 and 5, we provide computational experiments. Finally, in Chapter 6 we present conclusions as well future research directions. Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics.In the wake of terrorism and natural disasters, assessing networked systems for vulnerability to failures that arise from these events is essential to maintaining the operations of the systems. This is very crucial given the heavy dependence of daily social and economic activities on networked systems such as transport, telecommunication and energy networks as well as the interdependence of these networks. In this thesis, we explore methods to assess the vulnerability of networked systems to element failures which employ connectivity as the performance measure for vulnerability. The associated optimisation problem termed the critical node (edge) detection problem seeks to identify a subset of nodes (edges) of a network whose deletion (failure) optimises a network connectivity objective. Traditional connectivity measures employed in most studies of the critical node detection problem overlook internal cohesiveness of networks and the extent of connectivity in the network. This limits the effectiveness of the developed methods in uncovering vulnerability with regards to network connectivity. Our work therefore focuses on distance-based connectivity which is a fairly new class of connectivity introduced for studying the critical node detection problem to overcome the limitations of traditional connectivity measures. In Chapter 1, we provide an introduction outlining the motivations and the methods related to our study. In Chapter 2, we review the literature on the critical node detection problem as well as its application areas and related problems. Following this, we formally introduce the distance-based critical node detection problem in Chapter 3 where we propose new integer programming models for the case of hop-based distances and an efficient algorithm for the separation problems associated with the models. We also propose two families of valid inequalities. In Chapter 4, we consider the distance-based critical node detection problem using a heuristic approach in which we propose a centrality-based heuristic that employs a backbone crossover and a centrality-based neighbourhood search. In Chapter 5, we present generalisations of the methods proposed in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the problem which we term the distance based critical edge detection problem. Throughout Chapters 3, 4 and 5, we provide computational experiments. Finally, in Chapter 6 we present conclusions as well future research directions. Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Hierarchical Network Design

    Get PDF

    Responsive Algorithms for Defending Recon gurable Networks

    Get PDF
    We present algorithms to self-heal reconfigurable networks when they are under attack. These algorithms reconfigure the network during attack to protect two critical invariants. First, they insure that the network remains connected. Second, they insure that no node increases its degree by more than O(log n). We show both theoretically and empirically that our algorithms can successfully maintain these invariants even for large networks under massive attack by a computationally unbounded adversary

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed
    • …
    corecore