455 research outputs found

    High-Level Synthesis for Embedded Systems

    Get PDF

    NEW ALGORITHM FOR BEHAVIOURAL TEST GENERATION

    Get PDF
    Significant efforts of the test design community have addressed the development of high level test generation algorithms in the last decade. The main problem originates in the insufficiently low gate level fault coverage of test sets generated at the behavioural or functional levels due to oversimplifications which result from the application of highly abstract and technology-independent fault models. In this paper a novel behavioural level test generation algorithm is presented effectively utilizing information on the circuit structure, which is extracted from the high level synthesis process. Experimental results show that the gate level fault coverage of the test sets generated by the new algorithm is similar to those assured by the gate level test generation algorithms

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    EOOLT 2007 – Proceedings of the 1st International Workshop on Equation-Based Object-Oriented Languages and Tools

    Get PDF
    Computer aided modeling and simulation of complex systems, using components from multiple application domains, such as electrical, mechanical, hydraulic, control, etc., have in recent years witness0065d a significant growth of interest. In the last decade, novel equation-based object-oriented (EOO) modeling languages, (e.g. Mode- lica, gPROMS, and VHDL-AMS) based on acausal modeling using equations have appeared. Using such languages, it has become possible to model complex systems covering multiple application domains at a high level of abstraction through reusable model components. The interest in EOO languages and tools is rapidly growing in the industry because of their increasing importance in modeling, simulation, and specification of complex systems. There exist several different EOO language communities today that grew out of different application areas (multi-body system dynamics, electronic circuit simula- tion, chemical process engineering). The members of these disparate communities rarely talk to each other in spite of the similarities of their modeling and simulation needs. The EOOLT workshop series aims at bringing these different communities together to discuss their common needs and goals as well as the algorithms and tools that best support them. Despite the short deadlines and the fact that this is a new not very established workshop series, there was a good response to the call-for-papers. Thirteen papers and one presentation were accepted to the workshop program. All papers were subject to reviews by the program committee, and are present in these electronic proceedings. The workshop program started with a welcome and introduction to the area of equa- tion-based object-oriented languages, followed by paper presentations and discussion sessions after presentations of each set of related papers. On behalf of the program committee, the Program Chairmen would like to thank all those who submitted papers to EOOLT'2007. Special thanks go to David Broman who created the web page and helped with organization of the workshop. Many thanks to the program committee for reviewing the papers. EOOLT'2007 was hosted by the Technical University of Berlin, in conjunction with the ECOOP'2007 conference

    Development of a High-Level Design Space Exploration Methodology

    Get PDF
    Veröffentlichung des Wilhelm-Schickard-Institut für Informatik Universität Tübinge
    • …
    corecore