2,838 research outputs found

    Spatial Weighting Matrix Selection in Spatial Lag Econometric Model

    Get PDF
    This paper investigates the choice of spatial weighting matrix in a spatial lag model framework. In the empirical literature the choice of spatial weighting matrix has been characterized by a great deal of arbitrariness. The number of possible spatial weighting matrices is large, which until recently was considered to prevent investigation into the appropriateness of the empirical choices. Recently Kostov (2010) proposed a new approach that transforms the problem into an equivalent variable selection problem. This article expands the latter transformation approach into a two-step selection procedure. The proposed approach aims at reducing the arbitrariness in the selection of spatial weighting matrix in spatial econometrics. This allows for a wide range of variable selection methods to be applied to the high dimensional problem of selection of spatial weighting matrix. The suggested approach consists of a screening step that reduces the number of candidate spatial weighting matrices followed by an estimation step selecting the final model. An empirical application of the proposed methodology is presented. In the latter a range of different combinations of screening and estimation methods are employed and found to produce similar results. The proposed methodology is shown to be able to approximate and provide indications to what the ‘true’ spatial weighting matrix could be even when it is not amongst the considered alternatives. The similarity in results obtained using different methods suggests that their relative computational costs could be primary reasons for their choice. Some further extensions and applications are also discussed

    Conditional Transformation Models

    Full text link
    The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models only estimate the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularised optimisation of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel-based non-parametric approaches or parametric generalised additive models for location, scale and shape

    Understanding and teaching unequal probability of selection

    Get PDF
    This paper focuses on econometrics pedagogy. It demonstrates the importance of including probability weights in regression analysis using data from surveys that do not use simple random samples (SRS). We use concrete, numerical examples and simulation to show how to effectively teach this difficult material to a student audience. We relax the assumption of simple random sampling and show how unequal probability of selection can lead to biased, inconsistent OLS slope estimates. We then explain and apply probability weighted least squares, showing how weighting the observations by the reciprocal of the probability of inclusion in the sample improves performance. The exposition is non-mathematical and relies heavily on intuitive, visual displays to make the content accessible to students. This paper will enable professors to incorporate unequal probability of selection into their courses and allow students to use best practice techniques in analyzing data from complex surveys. The primary delivery vehicle is Microsoft Excel®. Two user-defined array functions, SAMPLE and LINESTW, are included in a prepared Excel workbook. We replicate all results in Stata® and offer a do file for easy analysis in Stata. Documented code in Excel and Stata allows users to see each step in the sampling and probability weighted least squares algorithms. All files and code are available at www.depauw.edu/learn/stata.unequal probability; complex survey; simulation; weighted regression

    Inference on Treatment Effects After Selection Amongst High-Dimensional Controls

    Get PDF
    We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances. Our analysis allows the number of controls to be much larger than the sample size. To make informative inference feasible, we require the model to be approximately sparse; that is, we require that the effect of confounding factors can be controlled for up to a small approximation error by conditioning on a relatively small number of controls whose identities are unknown. The latter condition makes it possible to estimate the treatment effect by selecting approximately the right set of controls. We develop a novel estimation and uniformly valid inference method for the treatment effect in this setting, called the "post-double-selection" method. Our results apply to Lasso-type methods used for covariate selection as well as to any other model selection method that is able to find a sparse model with good approximation properties. The main attractive feature of our method is that it allows for imperfect selection of the controls and provides confidence intervals that are valid uniformly across a large class of models. In contrast, standard post-model selection estimators fail to provide uniform inference even in simple cases with a small, fixed number of controls. Thus our method resolves the problem of uniform inference after model selection for a large, interesting class of models. We illustrate the use of the developed methods with numerical simulations and an application to the effect of abortion on crime rates

    GAMLSS for high-dimensional data – a flexible approach based on boosting

    Get PDF
    Generalized additive models for location, scale and shape (GAMLSS) are a popular semi-parametric modelling approach that, in contrast to conventional GAMs, regress not only the expected mean but every distribution parameter (e.g. location, scale and shape) to a set of covariates. Current fitting procedures for GAMLSS are infeasible for high-dimensional data setups and require variable selection based on (potentially problematic) information criteria. The present work describes a boosting algorithm for high-dimensional GAMLSS that was developed to overcome these limitations. Specifically, the new algorithm was designed to allow the simultaneous estimation of predictor effects and variable selection. The proposed algorithm was applied to data of the Munich Rental Guide, which is used by landlords and tenants as a reference for the average rent of a flat depending on its characteristics and spatial features. The net-rent predictions that resulted from the high-dimensional GAMLSS were found to be highly competitive while covariate-specific prediction intervals showed a major improvement over classical GAMs
    corecore