10,297 research outputs found

    Formal Verification of Neural Network Controlled Autonomous Systems

    Full text link
    In this paper, we consider the problem of formally verifying the safety of an autonomous robot equipped with a Neural Network (NN) controller that processes LiDAR images to produce control actions. Given a workspace that is characterized by a set of polytopic obstacles, our objective is to compute the set of safe initial conditions such that a robot trajectory starting from these initial conditions is guaranteed to avoid the obstacles. Our approach is to construct a finite state abstraction of the system and use standard reachability analysis over the finite state abstraction to compute the set of the safe initial states. The first technical problem in computing the finite state abstraction is to mathematically model the imaging function that maps the robot position to the LiDAR image. To that end, we introduce the notion of imaging-adapted sets as partitions of the workspace in which the imaging function is guaranteed to be affine. We develop a polynomial-time algorithm to partition the workspace into imaging-adapted sets along with computing the corresponding affine imaging functions. Given this workspace partitioning, a discrete-time linear dynamics of the robot, and a pre-trained NN controller with Rectified Linear Unit (ReLU) nonlinearity, the second technical challenge is to analyze the behavior of the neural network. To that end, we utilize a Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible segments of different ReLUs. SMC solvers then use a Boolean satisfiability solver and a convex programming solver and decompose the problem into smaller subproblems. To accelerate this process, we develop a pre-processing algorithm that could rapidly prune the space feasible ReLU segments. Finally, we demonstrate the efficiency of the proposed algorithms using numerical simulations with increasing complexity of the neural network controller

    Verifiable Reinforcement Learning via Policy Extraction

    Full text link
    While deep reinforcement learning has successfully solved many challenging control tasks, its real-world applicability has been limited by the inability to ensure the safety of learned policies. We propose an approach to verifiable reinforcement learning by training decision tree policies, which can represent complex policies (since they are nonparametric), yet can be efficiently verified using existing techniques (since they are highly structured). The challenge is that decision tree policies are difficult to train. We propose VIPER, an algorithm that combines ideas from model compression and imitation learning to learn decision tree policies guided by a DNN policy (called the oracle) and its Q-function, and show that it substantially outperforms two baselines. We use VIPER to (i) learn a provably robust decision tree policy for a variant of Atari Pong with a symbolic state space, (ii) learn a decision tree policy for a toy game based on Pong that provably never loses, and (iii) learn a provably stable decision tree policy for cart-pole. In each case, the decision tree policy achieves performance equal to that of the original DNN policy

    Probabilistic Guarantees for Safe Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns. Rigorous testing of these controllers is challenging, particularly when they operate in probabilistic environments due to, for example, hardware faults or noisy sensors. We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in stochastic settings. Our approach is based on the iterative construction of a formal abstraction of a controller's execution in an environment, and leverages probabilistic model checking of Markov decision processes to produce probabilistic guarantees on safe behaviour over a finite time horizon. It produces bounds on the probability of safe operation of the controller for different initial configurations and identifies regions where correct behaviour can be guaranteed. We implement and evaluate our approach on agents trained for several benchmark control problems

    A Unified View of Piecewise Linear Neural Network Verification

    Full text link
    The success of Deep Learning and its potential use in many safety-critical applications has motivated research on formal verification of Neural Network (NN) models. Despite the reputation of learned NN models to behave as black boxes and the theoretical hardness of proving their properties, researchers have been successful in verifying some classes of models by exploiting their piecewise linear structure and taking insights from formal methods such as Satisifiability Modulo Theory. These methods are however still far from scaling to realistic neural networks. To facilitate progress on this crucial area, we make two key contributions. First, we present a unified framework that encompasses previous methods. This analysis results in the identification of new methods that combine the strengths of multiple existing approaches, accomplishing a speedup of two orders of magnitude compared to the previous state of the art. Second, we propose a new data set of benchmarks which includes a collection of previously released testcases. We use the benchmark to provide the first experimental comparison of existing algorithms and identify the factors impacting the hardness of verification problems.Comment: Updated version of "Piecewise Linear Neural Network verification: A comparative study
    corecore