27,951 research outputs found

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads

    A Low Cost Two-Tier Architecture Model For High Availability Clusters Application Load Balancing

    Full text link
    This article proposes a design and implementation of a low cost two-tier architecture model for high availability cluster combined with load-balancing and shared storage technology to achieve desired scale of three-tier architecture for application load balancing e.g. web servers. The research work proposes a design that physically omits Network File System (NFS) server nodes and implements NFS server functionalities within the cluster nodes, through Red Hat Cluster Suite (RHCS) with High Availability (HA) proxy load balancing technologies. In order to achieve a low-cost implementation in terms of investment in hardware and computing solutions, the proposed architecture will be beneficial. This system intends to provide steady service despite any system components fails due to uncertainly such as network system, storage and applications.Comment: Load balancing, high availability cluster, web server cluster

    Design and evaluation of a scalable hierarchical application component placement algorithm for cloud resource allocation

    Get PDF
    In the context of cloud systems, mapping application components to a set of physical servers and assigning resources to those components is challenging. For large-scale clouds, traditional resource allocation systems, which rely on a centralized management paradigm, become ineffective and inefficient. Therefore, there is an essential need of providing new management solutions that scale well with the size of large cloud systems. In this paper a distributed and hierarchical component placement algorithm is presented, evaluated and compared to a centralized algorithm. Each application is represented as a collection of interacting services, and multiple service types with differing placement characteristics are considered. Our evaluations show that the proposed algorithm is at least 84.65 times faster and offers better scalability compared with a central approach, while the percentage of servers used and fully placed applications remains close to that of the centralized algorithm

    TCon: A transparent congestion control deployment platform for optimizing WAN transfers

    Get PDF
    Nowadays, many web services (e.g., cloud storage) are deployed inside datacenters and may trigger transfers to clients through WAN. TCP congestion control is a vital component for improving the performance (e.g., latency) of these services. Considering complex networking environment, the default congestion control algorithms on servers may not always be the most efficient, and new advanced algorithms will be proposed. However, adjusting congestion control algorithm usually requires modification of TCP stacks of servers, which is difficult if not impossible, especially considering different operating systems and configurations on servers. In this paper, we propose TCon, a light-weight, flexible and scalable platform that allows administrators (or operators) to deploy any appropriate congestion control algorithms transparently without making any changes to TCP stacks of servers. We have implemented TCon in Open vSwitch (OVS) and conducted extensive test-bed experiments by transparently deploying BBR congestion control algorithm over TCon. Test-bed results show that the BBR over TCon works effectively and the performance stays close to its native implementation on servers, reducing latency by 12.76% on average

    A Highly Available Cluster of Web Servers with Increased Storage Capacity

    Get PDF
    Ponencias de las Decimoséptimas Jornadas de Paralelismo de la Universidad de Castilla-La Mancha celebradas el 18,19 y 20 de septiembre de 2006 en AlbaceteWeb servers scalability has been traditionally solved by improving software elements or increasing hardware resources of the server machine. Another approach has been the usage of distributed architectures. In such architectures, usually, file al- location strategy has been either full replication or full distribution. In previous works we have showed that partial replication offers a good balance between storage capacity and reliability. It offers much higher storage capacity while reliability may be kept at an equivalent level of that from fully replicated solutions. In this paper we present the architectural details of Web cluster solutions adapted to partial replication. We also show that partial replication does not imply a penalty in performance over classical fully replicated architectures. For evaluation purposes we have used a simulation model under the OMNeT++ framework and we use mean service time as a performance comparison metric.Publicad
    • …
    corecore