343 research outputs found

    Maximum Scatter TSP in Doubling Metrics

    Full text link
    We study the problem of finding a tour of nn points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.50.5-approximation for the metric version of the problem and showed that this is the best possible ratio achievable in polynomial time (assuming PNPP \neq NP). Arkin et al. raised the question of whether a better approximation ratio can be obtained in the Euclidean plane. We answer this question in the affirmative in a more general setting, by giving a (1ϵ)(1-\epsilon)-approximation algorithm for dd-dimensional doubling metrics, with running time O~(n3+2O(KlogK))\tilde{O}\big(n^3 + 2^{O(K \log K)}\big), where K(13ϵ)dK \leq \left( \frac{13}{\epsilon} \right)^d. As a corollary we obtain (i) an efficient polynomial-time approximation scheme (EPTAS) for all constant dimensions dd, (ii) a polynomial-time approximation scheme (PTAS) for dimension d=loglogn/cd = \log\log{n}/c, for a sufficiently large constant cc, and (iii) a PTAS for constant dd and ϵ=Ω(1/loglogn)\epsilon = \Omega(1/\log\log{n}). Furthermore, we show the dependence on dd in our approximation scheme to be essentially optimal, unless Satisfiability can be solved in subexponential time

    Hypercube orientations with only two in-degrees

    Get PDF
    We consider the problem of orienting the edges of the nn-dimensional hypercube so only two different in-degrees aa and bb occur. We show that this can be done, for two specified in-degrees, if and only if an obvious necessary condition holds. Namely, there exist non-negative integers ss and tt so that s+t=2ns+t=2^n and as+bt=n2n1as+bt=n2^{n-1}. This is connected to a question arising from constructing a strategy for a "hat puzzle."Comment: 9 pages, 4 figure

    Analysis of combinatorial search spaces for a class of NP-hard problems, An

    Get PDF
    2011 Spring.Includes bibliographical references.Given a finite but very large set of states X and a real-valued objective function ƒ defined on X, combinatorial optimization refers to the problem of finding elements of X that maximize (or minimize) ƒ. Many combinatorial search algorithms employ some perturbation operator to hill-climb in the search space. Such perturbative local search algorithms are state of the art for many classes of NP-hard combinatorial optimization problems such as maximum k-satisfiability, scheduling, and problems of graph theory. In this thesis we analyze combinatorial search spaces by expanding the objective function into a (sparse) series of basis functions. While most analyses of the distribution of function values in the search space must rely on empirical sampling, the basis function expansion allows us to directly study the distribution of function values across regions of states for combinatorial problems without the need for sampling. We concentrate on objective functions that can be expressed as bounded pseudo-Boolean functions which are NP-hard to solve in general. We use the basis expansion to construct a polynomial-time algorithm for exactly computing constant-degree moments of the objective function ƒ over arbitrarily large regions of the search space. On functions with restricted codomains, these moments are related to the true distribution by a system of linear equations. Given low moments supplied by our algorithm, we construct bounds of the true distribution of ƒ over regions of the space using a linear programming approach. A straightforward relaxation allows us to efficiently approximate the distribution and hence quickly estimate the count of states in a given region that have certain values under the objective function. The analysis is also useful for characterizing properties of specific combinatorial problems. For instance, by connecting search space analysis to the theory of inapproximability, we prove that the bound specified by Grover's maximum principle for the Max-Ek-Lin-2 problem is sharp. Moreover, we use the framework to prove certain configurations are forbidden in regions of the Max-3-Sat search space, supplying the first theoretical confirmation of empirical results by others. Finally, we show that theoretical results can be used to drive the design of algorithms in a principled manner by using the search space analysis developed in this thesis in algorithmic applications. First, information obtained from our moment retrieving algorithm can be used to direct a hill-climbing search across plateaus in the Max-k-Sat search space. Second, the analysis can be used to control the mutation rate on a (1+1) evolutionary algorithm on bounded pseudo-Boolean functions so that the offspring of each search point is maximized in expectation. For these applications, knowledge of the search space structure supplied by the analysis translates to significant gains in the performance of search

    Two Theorems in List Decoding

    Full text link
    We prove the following results concerning the list decoding of error-correcting codes: (i) We show that for \textit{any} code with a relative distance of δ\delta (over a large enough alphabet), the following result holds for \textit{random errors}: With high probability, for a \rho\le \delta -\eps fraction of random errors (for any \eps>0), the received word will have only the transmitted codeword in a Hamming ball of radius ρ\rho around it. Thus, for random errors, one can correct twice the number of errors uniquely correctable from worst-case errors for any code. A variant of our result also gives a simple algorithm to decode Reed-Solomon codes from random errors that, to the best of our knowledge, runs faster than known algorithms for certain ranges of parameters. (ii) We show that concatenated codes can achieve the list decoding capacity for erasures. A similar result for worst-case errors was proven by Guruswami and Rudra (SODA 08), although their result does not directly imply our result. Our results show that a subset of the random ensemble of codes considered by Guruswami and Rudra also achieve the list decoding capacity for erasures. Our proofs employ simple counting and probabilistic arguments.Comment: 19 pages, 0 figure
    corecore