1,255 research outputs found

    Wayfinding and Navigation for People with Disabilities Using Social Navigation Networks

    Get PDF
    To achieve safe and independent mobility, people usually depend on published information, prior experience, the knowledge of others, and/or technology to navigate unfamiliar outdoor and indoor environments. Today, due to advances in various technologies, wayfinding and navigation systems and services are commonplace and are accessible on desktop, laptop, and mobile devices. However, despite their popularity and widespread use, current wayfinding and navigation solutions often fail to address the needs of people with disabilities (PWDs). We argue that these shortcomings are primarily due to the ubiquity of the compute-centric approach adopted in these systems and services, where they do not benefit from the experience-centric approach. We propose that following a hybrid approach of combining experience-centric and compute-centric methods will overcome the shortcomings of current wayfinding and navigation solutions for PWDs

    On the right track : comfort and confusion in indoor environments

    Get PDF
    Indoor navigation systems are not well adapted to the needs of their users. The route planning algorithms implemented in these systems are usually limited to shortest path calculations or derivatives, minimalizing Euclidian distance. Guiding people along routes that adhere better to their cognitive processes could ease wayfinding in indoor environments. This paper examines comfort and confusion perception during wayfinding by applying a mixed-method approach. The aforementioned method combined an exploratory focus group and a video-based online survey. From the discussions in the focus group, it could be concluded that indoor wayfinding must be considered at different levels: the local level and the global level. In the online survey, the focus was limited to the local level, i.e., local environmental characteristics. In this online study, the comfort and confusion ratings of multiple indoor navigation situations were analyzed. In general, the results indicate that open spaces and stairs need to be taken into account in the development of a more cognitively-sounding route planning algorithm. Implementing the results in a route planning algorithm could be a valuable improvement of indoor navigation support

    Wayfinding with Simulated Prosthetic Vision: Performance comparison with regular and structure-enhanced renderings

    Get PDF
    International audienceIn this study, we used a simulation of upcoming low-resolution visual neuroprostheses to evaluate the benefit of embedded computer vision techniques in a wayfinding task. We showed that augmenting the classical phosphene rendering with the basic structure of the environment - displaying the ground plane with a different level of brightness - increased both wayfinding performance and cognitive mapping. In spite of the low resolution of current and upcoming visual implants, the improvement of these cognitive functions may already be possible with embedded artificial vision algorithms

    Computationally determining the salience of decision points for real-time wayfinding support

    Get PDF
    This study introduces the concept of computational salience to explain the discriminatory efficacy of decision points which in turn may have applications to providing real-time assistance to users of navigational aids. This research compared algorithms for calculating the computational salience of decision points and validated the results via three methods: high-salience decision points were used to classify wayfinders; salience scores were used to weight a conditional probabilistic scoring function for real-time wayfinder performance classification; and salience scores were correlated with wayfinding-performance metrics. As an exploratory step to linking computational and cognitive salience a photograph-recognition experiment was conducted. Results reveal a distinction between algorithms useful for determining computational and cognitive saliences. For computational salience information about the structural integration of decision points is effective while information about the probability of decision-point traversal shows promise for determining cognitive salience. Limitations from only using structural information and motivations for future work that include non-structural information are elicited

    Wayfinding and Navigation for People with Disabilities Using Social Navigation Networks

    Full text link
    • …
    corecore