484 research outputs found

    Algorithms for Multicommodity Flows in Planar Graphs

    Get PDF
    This paper gives efficient algorithms for the multicommodity flow problem for two classes Ct2 and Co~ of planar undirected graphs. Every graph in Ct2 has two face boundaries B t and B 2 such that each of the source-sink pairs lies on B 1 or B 2. On the other hand, every graph in Cot has a face boundary B t such that some of the source-sink pairs lie on B 1 and all the other pairs share a common sink lying on B t. The algorithms run in O(kn + nT(n)) time if a graph has n vertices and k source-sink pairs and T(n) is the time required for finding the single-source shortest paths in a planar graph of n vertices

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)M(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r3r)O(r \cdot 3^r) approximation for MaxEDP

    Minimum multicuts and Steiner forests for Okamura-Seymour graphs

    Full text link
    We study the problem of finding minimum multicuts for an undirected planar graph, where all the terminal vertices are on the boundary of the outer face. This is known as an Okamura-Seymour instance. We show that for such an instance, the minimum multicut problem can be reduced to the minimum-cost Steiner forest problem on a suitably defined dual graph. The minimum-cost Steiner forest problem has a 2-approximation algorithm. Hence, the minimum multicut problem has a 2-approximation algorithm for an Okamura-Seymour instance.Comment: 6 pages, 1 figur

    When the Cut Condition is Enough: A Complete Characterization for Multiflow Problems in Series-Parallel Networks

    Full text link
    Let G=(V,E)G=(V,E) be a supply graph and H=(V,F)H=(V,F) a demand graph defined on the same set of vertices. An assignment of capacities to the edges of GG and demands to the edges of HH is said to satisfy the \emph{cut condition} if for any cut in the graph, the total demand crossing the cut is no more than the total capacity crossing it. The pair (G,H)(G,H) is called \emph{cut-sufficient} if for any assignment of capacities and demands that satisfy the cut condition, there is a multiflow routing the demands defined on HH within the network with capacities defined on GG. We prove a previous conjecture, which states that when the supply graph GG is series-parallel, the pair (G,H)(G,H) is cut-sufficient if and only if (G,H)(G,H) does not contain an \emph{odd spindle} as a minor; that is, if it is impossible to contract edges of GG and delete edges of GG and HH so that GG becomes the complete bipartite graph K2,pK_{2,p}, with p3p\geq 3 odd, and HH is composed of a cycle connecting the pp vertices of degree 2, and an edge connecting the two vertices of degree pp. We further prove that if the instance is \emph{Eulerian} --- that is, the demands and capacities are integers and the total of demands and capacities incident to each vertex is even --- then the multiflow problem has an integral solution. We provide a polynomial-time algorithm to find an integral solution in this case. In order to prove these results, we formulate properties of tight cuts (cuts for which the cut condition inequality is tight) in cut-sufficient pairs. We believe these properties might be useful in extending our results to planar graphs.Comment: An extended abstract of this paper will be published at the 44th Symposium on Theory of Computing (STOC 2012

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KVK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logk/loglogk)O(\log k/\log \log k), where k=Kk = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logk)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin
    corecore