6,502 research outputs found

    Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

    Full text link
    We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (45∘45^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≀19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Kochen-Specker Vectors

    Full text link
    We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R^n, on algorithms that single out those diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192 (117) vector system translated into MMP diagram notation with a new graphical representation, results on Tkadlec's dual diagrams added, several other new results added, journal version: to be published in J. Phys. A, 38 (2005). Web page: http://m3k.grad.hr/pavici

    Business Process Visualization - Use Cases, Challenges, Solutions

    Get PDF
    The proper visualization and monitoring of their (ongoing) business processes is crucial for any enterprise. Thus a broad spectrum of processes has to be visualized ranging from simple, short–running processes to complex long–running ones (consisting of up to hundreds of activities). In any case, users shall be able to quickly understand the logic behind a process and to get a quick overview of related tasks. One practical problem arises when different fragments of a business process are scattered over several systems where they are often modeled using different process meta models (e.g., High–Level Petri Nets). The challenge is to find an integrated and user–friendly visualization for these business processes. In this paper we discover use cases relevant in this context. Since existing graph layout approaches have focused on general graph drawing so far we further develop a specific approach for layouting business process graphs. The work presented in this paper is embedded within a larger project (Proviado) on the visualization of automotive processes
    • 

    corecore