3,423 research outputs found

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    Bidirected minimum Manhattan network problem

    Full text link
    In the bidirected minimum Manhattan network problem, given a set T of n terminals in the plane, we need to construct a network N(T) of minimum total length with the property that the edges of N(T) are axis-parallel and oriented in a such a way that every ordered pair of terminals is connected in N(T) by a directed Manhattan path. In this paper, we present a polynomial factor 2 approximation algorithm for the bidirected minimum Manhattan network problem.Comment: 14 pages, 16 figure

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics

    The Maximum Traveling Salesman Problem with Submodular Rewards

    Full text link
    In this paper, we look at the problem of finding the tour of maximum reward on an undirected graph where the reward is a submodular function, that has a curvature of κ\kappa, of the edges in the tour. This problem is known to be NP-hard. We analyze two simple algorithms for finding an approximate solution. Both algorithms require O(V3)O(|V|^3) oracle calls to the submodular function. The approximation factors are shown to be 12+κ\frac{1}{2+\kappa} and max{23(2+κ),2/3(1κ)}\max\set{\frac{2}{3(2+\kappa)},2/3(1-\kappa)}, respectively; so the second method has better bounds for low values of κ\kappa. We also look at how these algorithms perform for a directed graph and investigate a method to consider edge costs in addition to rewards. The problem has direct applications in monitoring an environment using autonomous mobile sensors where the sensing reward depends on the path taken. We provide simulation results to empirically evaluate the performance of the algorithms.Comment: Extended version of ACC 2013 submission (including p-system greedy bound with curvature

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    The Parameterized Complexity of Coordinated Motion Planning

    Get PDF
    corecore