75,885 research outputs found

    A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State

    Full text link
    We study classical deadline-based preemptive scheduling of tasks in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each task is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed scaling alone, the addition of a sleep state makes it sometimes beneficial to accelerate the processing of tasks in order to transition the processor to the sleep state for longer amounts of time and incur further energy savings. The goal is to output a feasible schedule that minimizes the energy consumption. Since the introduction of the problem by Irani et al. [16], its exact computational complexity has been repeatedly posed as an open question (see e.g. [2,8,15]). The currently best known upper and lower bounds are a 4/3-approximation algorithm and NP-hardness due to [2] and [2,17], respectively. We close the aforementioned gap between the upper and lower bound on the computational complexity of speed scaling with sleep state by presenting a fully polynomial-time approximation scheme for the problem. The scheme is based on a transformation to a non-preemptive variant of the problem, and a discretization that exploits a carefully defined lexicographical ordering among schedules

    Energy-Efficient Scheduling for Homogeneous Multiprocessor Systems

    Get PDF
    We present a number of novel algorithms, based on mathematical optimization formulations, in order to solve a homogeneous multiprocessor scheduling problem, while minimizing the total energy consumption. In particular, for a system with a discrete speed set, we propose solving a tractable linear program. Our formulations are based on a fluid model and a global scheduling scheme, i.e. tasks are allowed to migrate between processors. The new methods are compared with three global energy/feasibility optimal workload allocation formulations. Simulation results illustrate that our methods achieve both feasibility and energy optimality and outperform existing methods for constrained deadline tasksets. Specifically, the results provided by our algorithm can achieve up to an 80% saving compared to an algorithm without a frequency scaling scheme and up to 70% saving compared to a constant frequency scaling scheme for some simulated tasksets. Another benefit is that our algorithms can solve the scheduling problem in one step instead of using a recursive scheme. Moreover, our formulations can solve a more general class of scheduling problems, i.e. any periodic real-time taskset with arbitrary deadline. Lastly, our algorithms can be applied to both online and offline scheduling schemes.Comment: Corrected typos: definition of J_i in Section 2.1; (3b)-(3c); definition of \Phi_A and \Phi_D in paragraph after (6b). Previous equations were correct only for special case of p_i=d_

    Stochastic Analysis of Power-Aware Scheduling

    Get PDF
    Energy consumption in a computer system can be reduced by dynamic speed scaling, which adapts the processing speed to the current load. This paper studies the optimal way to adjust speed to balance mean response time and mean energy consumption, when jobs arrive as a Poisson process and processor sharing scheduling is used. Both bounds and asymptotics for the optimal speeds are provided. Interestingly, a simple scheme that halts when the system is idle and uses a static rate while the system is busy provides nearly the same performance as the optimal dynamic speed scaling. However, dynamic speed scaling which allocates a higher speed when more jobs are present significantly improves robustness to bursty traffic and mis-estimation of workload parameters

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes
    corecore