621 research outputs found

    A Two-dimensional HLLC Riemann Solver for Conservation Laws : Application to Euler and MHD Flows

    Full text link
    In this paper we present a genuinely two-dimensional HLLC Riemann solver. On logically rectangular meshes, it accepts four input states that come together at an edge and outputs the multi-dimensionally upwinded fluxes in both directions. This work builds on, and improves, our prior work on two-dimensional HLL Riemann solvers. The HLL Riemann solver presented here achieves its stabilization by introducing a constant state in the region of strong interaction, where four one-dimensional Riemann problems interact vigorously with one another. A robust version of the HLL Riemann solver is presented here along with a strategy for introducing sub-structure in the strongly-interacting state. Introducing sub-structure turns the two-dimensional HLL Riemann solver into a two-dimensional HLLC Riemann solver. The sub-structure that we introduce represents a contact discontinuity which can be oriented in any direction relative to the mesh. The Riemann solver presented here is general and can work with any system of conservation laws. We also present a second order accurate Godunov scheme that works in three dimensions and is entirely based on the present multidimensional HLLC Riemann solver technology. The methods presented are cost-competitive with traditional higher order Godunov schemes

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

    Get PDF
    Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flow

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Multidimensional HLLE Riemann solver; Application to Euler and Magnetohydrodynamic Flows

    Full text link
    In this work we present a general strategy for constructing multidimensional Riemann solvers with a single intermediate state, with particular attention paid to detailing the two-dimensional Riemann solver. This is accomplished by introducing a constant resolved state between the states being considered, which introduces sufficient dissipation for systems of conservation laws. Closed form expressions for the resolved fluxes are also provided to facilitate numerical implementation. The Riemann solver is proved to be positively conservative for the density variable; the positivity of the pressure variable has been demonstrated for Euler flows when the divergence in the fluid velocities is suitably restricted so as to prevent the formation of cavitation in the flow. We also focus on the construction of multidimensionally upwinded electric fields for divergence-free magnetohydrodynamical flows. A robust and efficient second order accurate numerical scheme for two and three dimensional Euler and magnetohydrodynamic flows is presented. The scheme is built on the current multidimensional Riemann solver. The number of zones updated per second by this scheme on a modern processor is shown to be cost competitive with schemes that are based on a one-dimensional Riemann solver. However, the present scheme permits larger timesteps

    Second Order Accurate Schemes for Magnetohydrodynamics With Divergence-Free Reconstruction

    Full text link
    In this paper we study the problem of divergence-free numerical MHD and show that the work done so far still has four key unresolved issues. We resolve those issues in this paper. The problem of reconstructing MHD flow variables with spatially second order accuracy is also studied. The other goal of this paper is to show that the same well-designed second order accurate schemes can be formulated for more complex geometries such as cylindrical and spherical geometry. Being able to do divergence-free reconstruction in those geometries also resolves the problem of doing AMR in those geometries. The resulting MHD scheme has been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics. The present work also shows that divergence-free reconstruction and the divergence-free time-update can be done for numerical MHD on unstructured meshes. All the schemes designed here are shown to be second order accurate. Several stringent test problems are presented to show that the methods work, including problems involving high velocity flows in low plasma-b magnetospheric environments.Comment: 85 pages, 6 figure

    CELL-CENTERED LAGRANGIAN LAX-WENDROFF HLL HYBRID SCHEME ON UNSTRUCTURED MESHES

    Get PDF
    We have recently introduced a new cell-centered Lax-Wendroff HLL hybrid scheme for Lagrangian hydrodynamics [Fridrich et al. J. Comp. Phys. 326 (2016) 878-892] with results presented only on logical rectangular quadrilateral meshes. In this study we present an improved version on unstructured meshes, including uniform triangular and hexagonal meshes and non-uniform triangular and polygonal meshes. The performance of the scheme is verified on Noh and Sedov problems and its second-order convergence is verified on a smooth expansion test.Finally the choice of the scalar parameter controlling the amount of added artificial dissipation is studied
    corecore