578 research outputs found

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition

    Tight Bounds for Counting Colorings and Connected Edge Sets Parameterized by Cutwidth

    Get PDF
    We study the fine-grained complexity of counting the number of colorings and connected spanning edge sets parameterized by the cutwidth and treewidth of the graph. While decompositions of small treewidth decompose the graph with small vertex separators, decompositions with small cutwidth decompose the graph with small edge separators. Let p,q ? ? such that p is a prime and q ? 3. We show: - If p divides q-1, there is a (q-1)^{ctw}n^{O(1)} time algorithm for counting list q-colorings modulo p of n-vertex graphs of cutwidth ctw. Furthermore, there is no ? > 0 for which there is a (q-1-?)^{ctw} n^{O(1)} time algorithm that counts the number of list q-colorings modulo p of n-vertex graphs of cutwidth ctw, assuming the Strong Exponential Time Hypothesis (SETH). - If p does not divide q-1, there is no ? > 0 for which there exists a (q-?)^{ctw} n^{O(1)} time algorithm that counts the number of list q-colorings modulo p of n-vertex graphs of cutwidth ctw, assuming SETH. The lower bounds are in stark contrast with the existing 2^{ctw}n^{O(1)} time algorithm to compute the chromatic number of a graph by Jansen and Nederlof [Theor. Comput. Sci.\u2718]. Furthermore, by building upon the above lower bounds, we obtain the following lower bound for counting connected spanning edge sets: there is no ? > 0 for which there is an algorithm that, given a graph G and a cutwidth ordering of cutwidth ctw, counts the number of spanning connected edge sets of G modulo p in time (p - ?)^{ctw} n^{O(1)}, assuming SETH. We also give an algorithm with matching running time for this problem. Before our work, even for the treewidth parameterization, the best conditional lower bound by Dell et al. [ACM Trans. Algorithms\u2714] only excluded 2^{o(tw)}n^{O(1)} time algorithms for this problem. Both our algorithms and lower bounds employ use of the matrix rank method, by relating the complexity of the problem to the rank of a certain "compatibility matrix" in a non-trivial way

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur
    • …
    corecore