1,435 research outputs found

    Algorithms for Computing QoS Paths With Restoration

    Get PDF
    There is a growing interest among service providers to offer new services with Quality of Service (QoS) guarantees that are also resilient to failures. Supporting QoS connections requires the existence of a routing mechanism, that computes the QoS paths, i.e., paths that satisfy QoS constraints (e.g., delay or bandwidth). Resilience to failures, on the other hand, is achieved by providing, for each primary QoS path, a set of alternative QoS paths used upon a failure of either a link or a node. The above objectives, coupled with the need to minimize the global use of network resources, imply that the cost of both the primary path and the restoration topology should be a major consideration of the routing process. We undertake a comprehensive study of problems related to finding suitable restoration topologies for QoS paths. We consider both bottleneck QoS constraints, such as bandwidth, and additive QoS constraints, such as delay and jitter. This is the first study to provide a rigorous solution, with proven guarantees, to the combined problem of computing QoS paths with restoration. It turns out that the widely used approach of disjoint primary and restoration paths is not an optimal strategy. Hence, the proposed algorithms construct a restoration topology, i.e., a set of bridges, each bridge protecting a portion of the primary QoS path. This approach guarantees to find a restoration topology with low cost when one exists

    Algorithms for Computing QoS Paths With Restoration

    Get PDF
    There is a growing interest among service providers to offer new services with Quality of Service (QoS) guarantees that are also resilient to failures. Supporting QoS connections requires the existence of a routing mechanism, that computes the QoS paths, i.e., paths that satisfy QoS constraints (e.g., delay or bandwidth). Resilience to failures, on the other hand, is achieved by providing, for each primary QoS path, a set of alternative QoS paths used upon a failure of either a link or a node. The above objectives, coupled with the need to minimize the global use of network resources, imply that the cost of both the primary path and the restoration topology should be a major consideration of the routing process. We undertake a comprehensive study of problems related to finding suitable restoration topologies for QoS paths. We consider both bottleneck QoS constraints, such as bandwidth, and additive QoS constraints, such as delay and jitter. This is the first study to provide a rigorous solution, with proven guarantees, to the combined problem of computing QoS paths with restoration. It turns out that the widely used approach of disjoint primary and restoration paths is not an optimal strategy. Hence, the proposed algorithms construct a restoration topology, i.e., a set of bridges, each bridge protecting a portion of the primary QoS path. This approach guarantees to find a restoration topology with low cost when one exists

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Resilient availability and bandwidth-aware multipath provisioning for media transfer over the internet (Best Paper Award)

    Get PDF
    Traditional routing in the Internet is best-effort. Path differentiation including multipath routing is a promising technique to be used for meeting QoS requirements of media intensive applications. Since different paths have different characteristics in terms of latency, availability and bandwidth, they offer flexibility in QoS and congestion control. Additionally protection techniques can be used to enhance the reliability of the network. This paper studies the problem of how to optimally find paths ensuring maximal bandwidth and resiliency of media transfer over the network. In particular, we propose two algorithms to reserve network paths with minimal new resources while increasing the availability of the paths and enabling congestion control. The first algorithm is based on Integer Linear Programming which minimizes the cost of the paths and the used resources. The second one is a heuristic-based algorithm which solves the scalability limitations of the ILP approach. The algorithms ensure resiliency against any single link failure in the network. The experimental results indicate that using the proposed schemes the connections availability improve significantly and a more balanced load is achieved in the network compared to the shortest path-based approaches

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research
    corecore