5 research outputs found

    Metagenomic analysis through the extended Burrows-Wheeler transform

    Get PDF
    Background: The development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities. Results: In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME. Conclusions: In order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity - e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% - while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples

    Recent Advances in Fully Dynamic Graph Algorithms

    Full text link
    In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore