1,854 research outputs found

    Finding all minimal curb sets

    Get PDF
    Sets closed under rational behavior were introduced by Basu and Weibull (1991) as subsets of the strategy space that contain all best replies to all strategy profiles in the set. We here consider a more restrictive notion of closure under rational behavior: a subset of the strategy space is strongly closed under rational behavior, or sCURB, if it contains all best replies to all probabilistic beliefs over the set. We present an algorithm that computes all minimal sCURB sets in any given finite game. Runtime measurements on two-player games (where the concepts of CURB and sCURB coincide) show that the algorithm is considerably faster than the earlier developed algorithm, that of Benisch et al. (2006)

    Congestion, equilibrium and learning: The minority game

    Get PDF
    The minority game is a simple congestion game in which the players' main goal is to choose among two options the one that is adopted by the smallest number of players. We characterize the set of Nash equilibria and the limiting behavior of several well-known learning processes in the minority game with an arbitrary odd number of players. Interestingly, different learning processes provide considerably different predictions

    Fairness with an Honest Minority and a Rational Majority

    Get PDF
    We provide a simple protocol for secret reconstruction in any threshold secret sharing scheme, and prove that it is fair when executed with many rational parties together with a small minority of honest parties. That is, all parties will learn the secret with high probability when the honest parties follow the protocol and the rational parties act in their own self-interest (as captured by a set-Nash analogue of trembling hand perfect equilibrium). The protocol only requires a standard (synchronous) broadcast channel, tolerates both early stopping and incorrectly computed messages, and only requires 2 rounds of communication. Previous protocols for this problem in the cryptographic or economic models have either required an honest majority, used strong communication channels that enable simultaneous exchange of information, or settled for approximate notions of security/equilibria. They all also required a nonconstant number of rounds of communication.Engineering and Applied Science
    corecore