9,131 research outputs found

    Architectures for block Toeplitz systems

    Get PDF
    In this paper efficient VLSI architectures of highly concurrent algorithms for the solution of block linear systems with Toeplitz or near-to-Toeplitz entries are presented. The main features of the proposed scheme are the use of scalar only operations, multiplications/divisions and additions, and the local communication which enables the development of wavefront array architecture. Both the mean squared error and the total squared error formulations are described and a variety of implementations are given

    Atmospheric tomography with separate minimum variance laser and natural guide star mode control

    Get PDF
    This paper introduces a novel, computationally efficient, and practical atmospheric tomography wavefront control architecture with separate minimum variance laser and natural guide star mode estimation. The architecture is applicable to all laser tomography systems, including multi conjugate adaptive optics (MCAO), laser tomography adaptive optics (LTAO), and multi object adaptive optics (MOAO) systems. Monte Carlo simulation results for the Thirty Meter Telescope (TMT) MCAO system demonstrate its benefit over a previously introduced “ad hoc” split MCAO architecture, calling for further in-depth analysis and simulations over a representative ensemble of natural guide star (NGS) asterisms with optimized loop frame rates and modal gains

    Projection-Based and Look Ahead Strategies for Atom Selection

    Full text link
    In this paper, we improve iterative greedy search algorithms in which atoms are selected serially over iterations, i.e., one-by-one over iterations. For serial atom selection, we devise two new schemes to select an atom from a set of potential atoms in each iteration. The two new schemes lead to two new algorithms. For both the algorithms, in each iteration, the set of potential atoms is found using a standard matched filter. In case of the first scheme, we propose an orthogonal projection strategy that selects an atom from the set of potential atoms. Then, for the second scheme, we propose a look ahead strategy such that the selection of an atom in the current iteration has an effect on the future iterations. The use of look ahead strategy requires a higher computational resource. To achieve a trade-off between performance and complexity, we use the two new schemes in cascade and develop a third new algorithm. Through experimental evaluations, we compare the proposed algorithms with existing greedy search and convex relaxation algorithms.Comment: sparsity, compressive sensing; IEEE Trans on Signal Processing 201

    Hierarchical Mixtures of Experts and the EM Algorithm

    Get PDF
    We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain

    Three-structured smooth transition regression models based on CART algorithm

    Get PDF
    In the present work, a tree-based model that combines aspects of CART (Classification and Regression Trees) and STR (Smooth Transition Regression) is proposed. The main idea relies on specifying a parametric nonlinear model through a tree-growing procedure. The resulting model can be analysed either as a fuzzy regression or as a smooth transition regression with multiple regimes. Decisions about splits are entirely based on statistical tests of hypotheses and confidence intervals are constructed for the parameters within the terminal nodes as well as the final predictions. A Monte Carlo Experiment shows the estimators’ properties and the ability of the proposed algorithm to identify correctly several tree architectures. An application to the famous Boston Housing dataset shows that the proposed model provides better explanation with the same number of leaves as the one obtained with the CART algorithm.
    • 

    corecore