108 research outputs found

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets …\dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Contributions on secretary problems, independent sets of rectangles and related problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 187-198).We study three problems arising from different areas of combinatorial optimization. We first study the matroid secretary problem, which is a generalization proposed by Babaioff, Immorlica and Kleinberg of the classical secretary problem. In this problem, the elements of a given matroid are revealed one by one. When an element is revealed, we learn information about its weight and decide to accept it or not, while keeping the accepted set independent in the matroid. The goal is to maximize the expected weight of our solution. We study different variants for this problem depending on how the elements are presented and on how the weights are assigned to the elements. Our main result is the first constant competitive algorithm for the random-assignment random-order model. In this model, a list of hidden nonnegative weights is randomly assigned to the elements of the matroid, which are later presented to us in uniform random order, independent of the assignment. The second problem studied is the jump number problem. Consider a linear extension L of a poset P. A jump is a pair of consecutive elements in L that are not comparable in P. Finding a linear extension minimizing the number of jumps is NP-hard even for chordal bipartite posets. For the class of posets having two directional orthogonal ray comparability graphs, we show that this problem is equivalent to finding a maximum independent set of a well-behaved family of rectangles. Using this, we devise combinatorial and LP-based algorithms for the jump number problem, extending the class of bipartite posets for which this problem is polynomially solvable and improving on the running time of existing algorithms for certain subclasses. The last problem studied is the one of finding nonempty minimizers of a symmetric submodular function over any family of sets closed under inclusion. We give an efficient O(ns)-time algorithm for this task, based on Queyranne's pendant pair technique for minimizing unconstrained symmetric submodular functions. We extend this algorithm to report all inclusion-wise nonempty minimal minimizers under hereditary constraints of slightly more general functions.by José Antonio Soto.Ph.D

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    • …
    corecore