312 research outputs found

    Space-Efficient Dictionaries for Parameterized and Order-Preserving Pattern Matching

    Get PDF
    Let S and S\u27 be two strings of the same length.We consider the following two variants of string matching. * Parameterized Matching: The characters of S and S\u27 are partitioned into static characters and parameterized characters. The strings are parameterized match iff the static characters match exactly and there exists a one-to-one function which renames the parameterized characters in S to those in S\u27. * Order-Preserving Matching: The strings are order-preserving match iff for any two integers i,j in [1,|S|], S[i] <= S[j] iff S\u27[i] <= S\u27[j]. Let P be a collection of d patterns {P_1, P_2, ..., P_d} of total length n characters, which are chosen from an alphabet Sigma. Given a text T, also over Sigma, we consider the dictionary indexing problem under the above definitions of string matching. Specifically, the task is to index P, such that we can report all positions j where at least one of the patterns P_i in P is a parameterized-match (resp. order-preserving match) with the same-length substring of TT starting at j. Previous best-known indexes occupy O(n * log(n)) bits and can report all occ positions in O(|T| * log(|Sigma|) + occ) time. We present space-efficient indexes that occupy O(n * log(|Sigma|+d) * log(n)) bits and reports all occ positions in O(|T| * (log(|Sigma|) + log_{|Sigma|}(n)) + occ) time for parameterized matching and in O(|T| * log(n) + occ) time for order-preserving matching

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Alternative parameterizations of Metric Dimension

    Get PDF
    A set of vertices WW in a graph GG is called resolving if for any two distinct x,y∈V(G)x,y\in V(G), there is v∈Wv\in W such that distG(v,x)≠distG(v,y){\rm dist}_G(v,x)\neq{\rm dist}_G(v,y), where distG(u,v){\rm dist}_G(u,v) denotes the length of a shortest path between uu and vv in the graph GG. The metric dimension md(G){\rm md}(G) of GG is the minimum cardinality of a resolving set. The Metric Dimension problem, i.e. deciding whether md(G)≤k{\rm md}(G)\le k, is NP-complete even for interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the lens of parameterized complexity. The problem parameterized by kk was proved to be W[2]W[2]-hard by Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether md(G)≤n−k,{\rm md}(G)\le n- k, where nn is the order of GG. We prove that the dual parameterization admits (a) a kernel with at most 3k43k^4 vertices and (b) an algorithm of runtime O∗(4k+o(k)).O^*(4^{k+o(k)}). Hartung and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when parameterized by the vertex cover number vc(G)vc(G) of the input graph. We complement this observation by showing that it does not admit a polynomial kernel even when parameterized by vc(G)+kvc(G) + k. Our reduction also gives evidence for non-existence of polynomial Turing kernels

    Distributed MIS in O(log log n) Awake Complexity

    Get PDF
    Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best known (randomized) MIS algorithms have O(log n) round complexity on general graphs [Luby, STOC 1986] (where n is the number of nodes), while the best known lower bound is [EQUATION] [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the O(log n) round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Energy is a premium resource in various settings such as battery-powered wireless networks and sensor networks. The bulk of the energy is used by nodes when they are awake, i.e., when they are sending, receiving, and even just listening for messages. On the other hand, when a node is sleeping, it does not perform any communication and thus spends very little energy. Several recent works have addressed the problem of designing energy-efficient distributed algorithms for various fundamental problems. These algorithms operate by minimizing the number of rounds in which any node is awake, also called the (worst-case) awake complexity. An intriguing open question is whether one can design a distributed MIS algorithm that has significantly smaller awake complexity compared to existing algorithms. In particular, the question of obtaining a distributed MIS algorithm with o(log n) awake complexity was left open in [Chatterjee, Gmyr, Pandurangan, PODC 2020]. Our main contribution is to show that MIS can be computed in awake complexity that is exponentially better compared to the best known round complexity of O(log n) and also bypassing its fundamental [EQUATION] round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in O(log log n) awake complexity with high probability.1 However, this algorithm has a round complexity that is O(poly(n)). We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in O((log log n) log* n) awake complexity and O((log3 n)(log log n) log* n) round complexity. Our algorithms work in the CONGEST model where messages of size O(log n) bits can be sent per edge per round

    Distributed MIS in O(log log n) Awake Complexity

    Get PDF
    Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best known (randomized) MIS algorithms have O(log n) round complexity on general graphs [Luby, STOC 1986] (where n is the number of nodes), while the best known lower bound is [EQUATION] [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the O(log n) round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Energy is a premium resource in various settings such as battery-powered wireless networks and sensor networks. The bulk of the energy is used by nodes when they are awake, i.e., when they are sending, receiving, and even just listening for messages. On the other hand, when a node is sleeping, it does not perform any communication and thus spends very little energy. Several recent works have addressed the problem of designing energy-efficient distributed algorithms for various fundamental problems. These algorithms operate by minimizing the number of rounds in which any node is awake, also called the (worst-case) awake complexity. An intriguing open question is whether one can design a distributed MIS algorithm that has significantly smaller awake complexity compared to existing algorithms. In particular, the question of obtaining a distributed MIS algorithm with o(log n) awake complexity was left open in [Chatterjee, Gmyr, Pandurangan, PODC 2020]. Our main contribution is to show that MIS can be computed in awake complexity that is exponentially better compared to the best known round complexity of O(log n) and also bypassing its fundamental [EQUATION] round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in O(log log n) awake complexity with high probability.1 However, this algorithm has a round complexity that is O(poly(n)). We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in O((log log n) log* n) awake complexity and O((log3 n)(log log n) log* n) round complexity. Our algorithms work in the CONGEST model where messages of size O(log n) bits can be sent per edge per round

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    History of Cryptographic Key Sizes

    Get PDF
    International audienc
    • …
    corecore