102 research outputs found

    Communication protocols and quantum error-correcting codes from the perspective of topological quantum field theory

    Full text link
    Topological quantum field theories (TQFTs) provide a general, minimal-assumption language for describing quantum-state preparation and measurement. They therefore provide a general language in which to express multi-agent communication protocols, e.g. local operations, classical communication (LOCC) protocols. Here we construct LOCC protocols using TQFT, and show that LOCC protocols induce quantum error-correcting codes (QECCs) on the agent-environment boundary. Such QECCs can be regarded as implementing, or inducing the emergence of, spacetimes on such boundaries. We investigate this connection between inter-agent communication and spacetime using BF and Chern-Simons theories, and then using topological M-theory.Comment: 52 page

    An algorithm for Tambara-Yamagami quantum invariants of 3-manifolds, parameterized by the first Betti number

    Full text link
    Quantum topology provides various frameworks for defining and computing invariants of manifolds. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we consider a restricted class of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. These categories are particularly simple, being entirely specified by three pieces of data: a finite abelian group, a bicharacter of that group, and a sign ±1\pm 1. Despite being one of the simplest sources of state sum invariants, the computational complexities of Tambara-Yamagami invariants are yet to be fully understood. We make substantial progress on this problem. Our main result is the existence of a general fixed parameter tractable algorithm for all such topological invariants, where the parameter is the first Betti number of the 3-manifold with Z/2Z\mathbb{Z}/2\mathbb{Z} coefficients. We also explain that these invariants are sometimes #P-hard to compute (and we expect that this is almost always the case). Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is easily computable in polynomial time.Comment: 24 pages, including 3 appendice

    An algorithm for Tambara-Yamagami quantum invariants of 3-manifolds, parameterized by the first Betti number

    No full text
    24 pages, including 3 appendicesQuantum topology provides various frameworks for defining and computing invariants of manifolds. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we consider a restricted class of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. These categories are particularly simple, being entirely specified by three pieces of data: a finite abelian group, a bicharacter of that group, and a sign ±1\pm 1. Despite being one of the simplest sources of state sum invariants, the computational complexities of Tambara-Yamagami invariants are yet to be fully understood. We make substantial progress on this problem. Our main result is the existence of a general fixed parameter tractable algorithm for all such topological invariants, where the parameter is the first Betti number of the 3-manifold with Z/2Z\mathbb{Z}/2\mathbb{Z} coefficients. We also explain that these invariants are sometimes #P-hard to compute (and we expect that this is almost always the case). Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is easily computable in polynomial time

    The exact evaluation of hexagonal spin-networks and topological quantum neural networks

    Full text link
    The physical scalar product between spin-networks has been shown to be a fundamental tool in the theory of topological quantum neural networks (TQNN), which are quantum neural networks previously introduced by the authors in the context of quantum machine learning. However, the effective evaluation of the scalar product remains a bottleneck for the applicability of the theory. We introduce an algorithm for the evaluation of the physical scalar product defined by Noui and Perez between spin-network with hexagonal shape. By means of recoupling theory and the properties of the Haar integration we obtain an efficient algorithm, and provide several proofs regarding the main steps. We investigate the behavior of the TQNN evaluations on certain classes of spin-networks with the classical and quantum recoupling. All results can be independently reproduced through the "idea.deploy" framework~\href{https://github.com/lullimat/idea.deploy}{\nolinkurl{https://github.com/lullimat/idea.deploy}}Comment: 15 pages (2 columns, 12+3), 16 figures. Comments are welcome

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    The free energy principle induces neuromorphic development

    Get PDF
    We show how any finite physical system with morphological, i.e. three-dimensional embedding or shape, degrees of freedom and locally limited free energy will, under the constraints of the free energy principle, evolve over time towards a neuromorphic morphology that supports hierarchical computations in which each ‘level’ of the hierarchy enacts a coarse-graining of its inputs, and dually, a fine-graining of its outputs. Such hierarchies occur throughout biology, from the architectures of intracellular signal transduction pathways to the large-scale organization of perception and action cycles in the mammalian brain. The close formal connections between cone-cocone diagrams (CCCD) as models of quantum reference frames on the one hand, and between CCCDs and topological quantum field theories on the other, allow the representation of such computations in the fully-general quantum-computational framework of topological quantum neural networks

    Tensor types and their use in physics

    Full text link
    The content of this paper can be roughly organized into a three-level hierarchy of generality. At the first, most general level, we introduce a new language which allows us to express various categorical structures in a systematic and explicit manner in terms of so-called 2-schemes. Although 2-schemes can formalize categorical structures such as symmetric monoidal categories, they are not limited to this, and can be used to define structures with no categorical analogue. Most categorical structures come with an effective graphical calculus such as string diagrams for symmetric monoidal categories, and the same is true more generally for interesting 2-schemes. In this work, we focus on one particular non-categorical 2-scheme, whose instances we refer to as tensor types. At the second level of the hierarchy, we work out different flavors of this 2-scheme in detail. The effective graphical calculus of tensor types is that of tensor networks or Penrose diagrams, that is, string diagrams without a flow of time. As such, tensor types are similar to compact closed categories, though there are various small but potentially important differences. Also, the two definitions use completely different mechanisms despite both being examples of 2-schemes. At the third level of the hierarchy, we provide a long list of different families of concrete tensor types, in a way which makes them accessible to concrete computations, motivated by their potential use in physics. Different tensor types describe different types of physical models, such as classical or quantum physics, deterministic or statistical physics, many-body or single-body physics, or matter with or without symmetries or fermions

    New Directions in Geometric and Applied Knot Theory

    Get PDF
    The aim of this book is to present recent results in both theoretical and applied knot theory—which are at the same time stimulating for leading researchers in the field as well as accessible to non-experts. The book comprises recent research results while covering a wide range of different sub-disciplines, such as the young field of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics

    Excursions at the Interface of Topological Phases of Matter and Quantum Error Correction

    Get PDF
    Topological quantum error-correcting codes are a family of stabilizer codes that are built using a lattice of qubits covering some manifold. The stabilizers of the code are local with respect to the underlying lattice, and logical information is encoded in the non-local degrees of freedom. The locality of stabilizers in these codes makes them especially suitable for experiments. From the condensed matter perspective, their code space corresponds to the ground state subspace of a local Hamiltonian belonging to a non-trivial topological phase of matter. The stabilizers of the code correspond to the Hamiltonian terms, and errors can be thought of as excitations above the ground state subspace. Conversely, one can use fixed point Hamiltonian of a topological phase of matter to define a topological quantum error-correcting code.This close connection has motivated numerous studies which utilize insights from one view- point to address questions in the other. This thesis further explores the possibilities in this di- rection. In the first two chapters, we present novel schemes to implement logical gates, which are motivated by viewing topological quantum error-correcting codes as topological phases of matter. In the third chapter, we show how the quantum error correction perspective could be used to realize robust topological entanglement phases in monitored random quantum circuits. And in the last chapter, we explore the possibility of extending this connection beyond topological quan- tum error-correcting codes. In particular, we introduce an order parameter for detecting k-local non-trivial states, which can be thought of as a generalization of topological states that includes codewords of any quantum error-correcting code

    This Week's Finds in Mathematical Physics (1-50)

    Full text link
    These are the first 50 issues of This Week's Finds of Mathematical Physics, from January 19, 1993 to March 12, 1995. These issues focus on quantum gravity, topological quantum field theory, knot theory, and applications of nn-categories to these subjects. However, there are also digressions into Lie algebras, elliptic curves, linear logic and other subjects. They were typeset in 2020 by Tim Hosgood. If you see typos or other problems please report them. (I already know the cover page looks weird).Comment: 242 page
    corecore