51 research outputs found

    Applying machine learning to heliophysics problems to broaden space-weather understanding

    Get PDF
    Understanding space-weather phenomena is a growing requisite given our day-today reliance upon space-based infrastructure. This entails identifying the causal factors of space-weather phenomena, quantifying the magnitude of response of space-weather events, and jointly using this information for forecasting. Machine learning (ML), as a set of mathematical and statistical tools, has been successfully used across many fields of research, demonstrating vast potential to improve our understanding of space-weather phenomena. We apply unsupervised ML (dimension-reduction and clustering) to derive robust solar wind classifications – providing further insight into space-weather driving. Our unsupervised techniques are applied to a theoretically-motivated set of exïżœtant composition variables - which are non-evolving with solar wind propagation. We demonstrate that solar-wind-speed-based classifications lose latent information regarding solar source regions. Our dimension-reduction suggests a more informative latent-space to represent streamer-belt-origin solar wind. Subsequently, we investigate the outer boundary of the outer radiation belt (OBORB). Modelling of the energetic-electrons in the outer radiation belt is crucial to the effective operation of many Earth-orbiting satellites, and the outer boundary conditions for such models are critical to accurate simulation. We apïżœplied simple ML models to a dataset of electron distribution functions, testing a range of potential boundary locations – yielding an empirical identification of the quiet-time boundary location. Next, we employed Bayesian neural networks to construct parameterised, probabilistic models providing synthetic nowcasts of the electron fluxes at the boundary. These models bridge the gap between the empirically identified OBORB location and the information required by modellers to construct the outer boundary conditions. This work showcases how a broad spectrum of ML techniques can be applied to a variety of space-weather related problems. We present novel scientific results with significant implications for future studies into the solar wind and radiation belts, and ultimately, space-weather forecasting

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    The Computational Power of Non-interacting Particles

    Full text link
    Shortened abstract: In this thesis, I study two restricted models of quantum computing related to free identical particles. Free fermions correspond to a set of two-qubit gates known as matchgates. Matchgates are classically simulable when acting on nearest neighbors on a path, but universal for quantum computing when acting on distant qubits or when SWAP gates are available. I generalize these results in two ways. First, I show that SWAP is only one in a large family of gates that uplift matchgates to quantum universality. In fact, I show that the set of all matchgates plus any nonmatchgate parity-preserving two-qubit gate is universal, and interpret this fact in terms of local invariants of two-qubit gates. Second, I investigate the power of matchgates in arbitrary connectivity graphs, showing they are universal on any connected graph other than a path or a cycle, and classically simulable on a cycle. I also prove the same dichotomy for the XY interaction. Free bosons give rise to a model known as BosonSampling. BosonSampling consists of (i) preparing a Fock state of n photons, (ii) interfering these photons in an m-mode linear interferometer, and (iii) measuring the output in the Fock basis. Sampling approximately from the resulting distribution should be classically hard, under reasonable complexity assumptions. Here I show that exact BosonSampling remains hard even if the linear-optical circuit has constant depth. I also report several experiments where three-photon interference was observed in integrated interferometers of various sizes, providing some of the first implementations of BosonSampling in this regime. The experiments also focus on the bosonic bunching behavior and on validation of BosonSampling devices. This thesis contains descriptions of the numerical analyses done on the experimental data, omitted from the corresponding publications.Comment: PhD Thesis, defended at Universidade Federal Fluminense on March 2014. Final version, 208 pages. New results in Chapter 5 correspond to arXiv:1106.1863, arXiv:1207.2126, and arXiv:1308.1463. New results in Chapter 6 correspond to arXiv:1212.2783, arXiv:1305.3188, arXiv:1311.1622 and arXiv:1412.678

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    On the Inherent Incompleteness of Scientific Theories

    Get PDF
    We examine the question of whether scientific theories can ever be complete. For two closely related reasons, we will argue that they cannot. The first reason is the inability to determine what are “valid empirical observations”, a result that is based on a self-reference Gödel/Tarski-like proof. The second reason is the existence of “meta-empirical” evidence of the inherent incompleteness of observations. These reasons, along with theoretical incompleteness, are intimately connected to the notion of belief and to theses within the philosophy of science: the Quine-Duhem (and underdetermination) thesis and the observational/theoretical distinction failure. Some puzzling aspects of the philosophical theses will become clearer in light of these connections. Other results that follow are: no absolute measure of the informational content of empirical data, no absolute measure of the entropy of physical systems, and no complete computer simulation of the natural world are possible. The connections with the mathematical theorems of Gödel and Tarski reveal the existence of other connections between scientific and mathematical incompleteness: computational irreducibility, complexity, infinity, arbitrariness and self-reference. Finally, suggestions will be offered of where a more rigorous (or formal) “proof” of scientific incompleteness can be found
    • 

    corecore