3,707 research outputs found

    Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP

    Get PDF
    2-Opt is probably the most basic local search heuristic for the TSP. This heuristic achieves amazingly good results on “real world” Euclidean instances both with respect to running time and approximation ratio. There are numerous experimental studies on the performance of 2-Opt. However, the theoretical knowledge about this heuristic is still very limited. Not even its worst case running time on 2-dimensional Euclidean instances was known so far. We clarify this issue by presenting, for every p∈N , a family of L p instances on which 2-Opt can take an exponential number of steps. Previous probabilistic analyses were restricted to instances in which n points are placed uniformly at random in the unit square [0,1]2, where it was shown that the expected number of steps is bounded by O~(n10) for Euclidean instances. We consider a more advanced model of probabilistic instances in which the points can be placed independently according to general distributions on [0,1] d , for an arbitrary d≥2. In particular, we allow different distributions for different points. We study the expected number of local improvements in terms of the number n of points and the maximal density ϕ of the probability distributions. We show an upper bound on the expected length of any 2-Opt improvement path of O~(n4+1/3⋅ϕ8/3) . When starting with an initial tour computed by an insertion heuristic, the upper bound on the expected number of steps improves even to O~(n4+1/3−1/d⋅ϕ8/3) . If the distances are measured according to the Manhattan metric, then the expected number of steps is bounded by O~(n4−1/d⋅ϕ) . In addition, we prove an upper bound of O(ϕ√d) on the expected approximation factor with respect to all L p metrics. Let us remark that our probabilistic analysis covers as special cases the uniform input model with ϕ=1 and a smoothed analysis with Gaussian perturbations of standard deviation σ with ϕ∼1/σ d

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    The Sampling-and-Learning Framework: A Statistical View of Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs), a large class of general purpose optimization algorithms inspired from the natural phenomena, are widely used in various industrial optimizations and often show excellent performance. This paper presents an attempt towards revealing their general power from a statistical view of EAs. By summarizing a large range of EAs into the sampling-and-learning framework, we show that the framework directly admits a general analysis on the probable-absolute-approximate (PAA) query complexity. We particularly focus on the framework with the learning subroutine being restricted as a binary classification, which results in the sampling-and-classification (SAC) algorithms. With the help of the learning theory, we obtain a general upper bound on the PAA query complexity of SAC algorithms. We further compare SAC algorithms with the uniform search in different situations. Under the error-target independence condition, we show that SAC algorithms can achieve polynomial speedup to the uniform search, but not super-polynomial speedup. Under the one-side-error condition, we show that super-polynomial speedup can be achieved. This work only touches the surface of the framework. Its power under other conditions is still open
    corecore