3,583 research outputs found

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlog⁡Δ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlog⁡Δ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201

    New results on stabbing segments with a polygon

    Get PDF
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Loftier and van Kreveld [Algorithmica 56(2), 236-269 (2010)] [16] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Partial match queries in relaxed K-dt trees

    Get PDF
    The study of partial match queries on random hierarchical multidimensional data structures dates back to Ph. Flajolet and C. Puech’s 1986 seminal paper on partial match retrieval. It was not until recently that fixed (as opposed to random) partial match queries were studied for random relaxed K-d trees, random standard K-d trees, and random 2-dimensional quad trees. Based on those results it seemed natural to classify the general form of the cost of fixed partial match queries into two families: that of either random hierarchical structures or perfectly balanced structures, as conjectured by Duch, Lau and Martínez (On the Cost of Fixed Partial Queries in K-d trees Algorithmica, 75(4):684–723, 2016). Here we show that the conjecture just mentioned does not hold by introducing relaxed K-dt trees and providing the average-case analysis for random partial match queries as well as some advances on the average-case analysis for fixed partial match queries on them. In fact this cost –for fixed partial match queries– does not follow the conjectured forms.Peer ReviewedPostprint (author's final draft

    Bounds on the Number of Longest Common Subsequences

    Get PDF
    This paper performs the analysis necessary to bound the running time of known, efficient algorithms for generating all longest common subsequences. That is, we bound the running time as a function of input size for algorithms with time essentially proportional to the output size. This paper considers both the case of computing all distinct LCSs and the case of computing all LCS embeddings. Also included is an analysis of how much better the efficient algorithms are than the standard method of generating LCS embeddings. A full analysis is carried out with running times measured as a function of the total number of input characters, and much of the analysis is also provided for cases in which the two input sequences are of the same specified length or of two independently specified lengths.Comment: 13 pages. Corrected typos, corrected operation of hyperlinks, improved presentatio
    • 

    corecore