504 research outputs found

    Optimizing hardware function evaluation

    No full text
    Published versio

    Multi-Band Covariance Interpolation with Applications in Massive MIMO

    Full text link
    In this paper, we study the problem of multi-band (frequency-variant) covariance interpolation with a particular emphasis towards massive MIMO applications. In a massive MIMO system, the communication between each BS with M≫1M \gg 1 antennas and each single-antenna user occurs through a collection of scatterers in the environment, where the channel vector of each user at BS antennas consists in a weighted linear combination of the array responses of the scatterers, where each scatterer has its own angle of arrival (AoA) and complex channel gain. The array response at a given AoA depends on the wavelength of the incoming planar wave and is naturally frequency dependent. This results in a frequency-dependent distortion where the second order statistics, i.e., the covariance matrix, of the channel vectors varies with frequency. In this paper, we show that although this effect is generally negligible for a small number of antennas MM, it results in a considerable distortion of the covariance matrix and especially its dominant signal subspace in the massive MIMO regime where M→∞M \to \infty, and can generally incur a serious degradation of the performance especially in frequency division duplexing (FDD) massive MIMO systems where the uplink (UL) and the downlink (DL) communication occur over different frequency bands. We propose a novel UL-DL covariance interpolation technique that is able to recover the covariance matrix in the DL from an estimate of the covariance matrix in the UL under a mild reciprocity condition on the angular power spread function (PSF) of the users. We analyze the performance of our proposed scheme mathematically and prove its robustness under a sufficiently large spatial oversampling of the array. We also propose several simple off-the-shelf algorithms for UL-DL covariance interpolation and evaluate their performance via numerical simulations.Comment: A short version of this paper was submitted to IEEE International Symposium on Information Theory (ISIT), 201

    Survey of Floating-Point Software Arithmetics and Basic Library Mathematical Functions

    Get PDF
    Abstract Not Provided

    Single and double-length computation of elementary functions

    Get PDF

    Numerical methods for solving ordinary and partial differential equations

    Get PDF
    The numerical solution of ordinary differential equations will be the main topics discussed in the first half of this thesis. In Chapter 2 initial value problems are examined and the resulting differential equations are solved by using extrapolation techniques. Computer trials of the algorithm are completed by a special ordinary differential equation tester program and the statistics of its performance are compared with other established methods. In the following Chapter the relevant theory and properties, associated with Chebyshev polynomials, is presented. Then boundary value problems are solved by representing the ordinary differential equations as a Chebyshev series. Finally, similar methods are developed for the solution of partial differential equations

    A comparison of computational methods and algorithms for the complex gamma function

    Get PDF
    A survey and comparison of some computational methods and algorithms for gamma and log-gamma functions of complex arguments are presented. Methods and algorithms reported include Chebyshev approximations, Pade expansion and Stirling's asymptotic series. The comparison leads to the conclusion that Algorithm 421 published in the Communications of ACM by H. Kuki is the best program either for individual application or for the inclusion in subroutine libraries
    • …
    corecore