1,949 research outputs found

    Algorithmic randomness and monotone complexity on product space

    Full text link
    We study algorithmic randomness and monotone complexity on product of the set of infinite binary sequences. We explore the following problems: monotone complexity on product space, Lambalgen's theorem for correlated probability, classification of random sets by likelihood ratio tests, decomposition of complexity and independence, Bayesian statistics for individual random sequences. Formerly Lambalgen's theorem for correlated probability is shown under a uniform computability assumption in [H. Takahashi Inform. Comp. 2008]. In this paper we show the theorem without the assumption

    Uniform test of algorithmic randomness over a general space

    Get PDF
    The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Loef), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. - We allow non-compact spaces (like the space of continuous functions, underlying the Brownian motion). - The uniform test (deficiency of randomness) d_P(x) (depending both on the outcome x and the measure P should be defined in a general and natural way. - We see which of the old results survive: existence of universal tests, conservation of randomness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as "deficiency of independence. - The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).Comment: 40 pages. Journal reference and a slight correction in the proof of Theorem 7 adde

    Effective Capacity and Randomness of Closed Sets

    Full text link
    We investigate the connection between measure and capacity for the space of nonempty closed subsets of {0,1}*. For any computable measure, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions that characterize when the capacity of a random closed set equals zero or is >0. We construct for certain measures an effectively closed set with positive capacity and with Lebesgue measure zero

    On Generalized Computable Universal Priors and their Convergence

    Full text link
    Solomonoff unified Occam's razor and Epicurus' principle of multiple explanations to one elegant, formal, universal theory of inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of the universal semimeasure M converges rapidly to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal predictor in case of unknown mu. The first part of the paper investigates the existence and convergence of computable universal (semi)measures for a hierarchy of computability classes: recursive, estimable, enumerable, and approximable. For instance, M is known to be enumerable, but not estimable, and to dominate all enumerable semimeasures. We present proofs for discrete and continuous semimeasures. The second part investigates more closely the types of convergence, possibly implied by universality: in difference and in ratio, with probability 1, in mean sum, and for Martin-Loef random sequences. We introduce a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues. In particular, we show that convergence fails (holds) on generalized-random sequences in gappy (dense) Bernoulli classes.Comment: 22 page

    Algorithmic Randomness and Capacity of Closed Sets

    Full text link
    We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions on the measure m that characterize when the capacity of an m-random closed set equals zero. This includes new results in classical probability theory as well as results for algorithmic randomness. For certain computable measures, we construct effectively closed sets with positive capacity and with Lebesgue measure zero. We show that for computable measures, a real q is upper semi-computable if and only if there is an effectively closed set with capacity q
    • …
    corecore