1,364 research outputs found

    Algorithmic Integrability Tests for Nonlinear Differential and Lattice Equations

    Full text link
    Three symbolic algorithms for testing the integrability of polynomial systems of partial differential and differential-difference equations are presented. The first algorithm is the well-known Painlev\'e test, which is applicable to polynomial systems of ordinary and partial differential equations. The second and third algorithms allow one to explicitly compute polynomial conserved densities and higher-order symmetries of nonlinear evolution and lattice equations. The first algorithm is implemented in the symbolic syntax of both Macsyma and Mathematica. The second and third algorithms are available in Mathematica. The codes can be used for computer-aided integrability testing of nonlinear differential and lattice equations as they occur in various branches of the sciences and engineering. Applied to systems with parameters, the codes can determine the conditions on the parameters so that the systems pass the Painlev\'e test, or admit a sequence of conserved densities or higher-order symmetries.Comment: Submitted to: Computer Physics Communications, Latex, uses the style files elsart.sty and elsart12.st

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

    Get PDF
    We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schr\"odinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to B\"acklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate B\"acklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Lie symmetries of multidimensional difference equations

    Full text link
    A method is presented for calculating the Lie point symmetries of a scalar difference equation on a two-dimensional lattice. The symmetry transformations act on the equations and on the lattice. They take solutions into solutions and can be used to perform symmetry reduction. The method generalizes one presented in a recent publication for the case of ordinary difference equations. In turn, it can easily be generalized to difference systems involving an arbitrary number of dependent and independent variables
    corecore