951 research outputs found

    Platform for Testing and Evaluation of PUF and TRNG Implementations in FPGAs

    Get PDF
    Implementation of cryptographic primitives like Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) depends significantly on the underlying hardware. Common evaluation boards offered by FPGA vendors are not suitable for a fair benchmarking, since they have different vendor dependent configuration and contain noisy switching power supplies. The proposed hardware platform is primary aimed at testing and evaluation of cryptographic primitives across different FPGA and ASIC families. The modular platform consists of a motherboard and exchangeable daughter board modules. These are designed to be as simple as possible to allow cheap and independent evaluation of cryptographic blocks and namely PUFs. The motherboard is based on the Microsemi SmartFusion 2 SoC FPGA. It features a low-noise power supply, which simplifies evaluation of vulnerability to the side channel attacks. It provides also means of communication between the PC and the daughter module. Available software tools can be easily customized, for example to collect data from the random number generator located in the daughter module and to read it via USB interface. The daughter module can be plugged into the motherboard or connected using an HDMI cable to be placed inside a Faraday cage or a temperature control chamber. The whole platform was designed and optimized to fullfil the European HECTOR project (H2020) requirements

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Countermeasure implementation and effectiveness analysis for AES resistance against side channel attacks

    Get PDF
    Side Channel Analysis (SCA) is composed of a bunch of techniques employed to extract secret information from hardware operations through statistical analyses of execution data. For instance, the secret key of a crypto-algorithmic implementation could be targeted and its value could be retrieved. The data is obtained by measuring the power consumption or electromagnetic radiation of a device while performing an operation due to the linear relationship between the currents flowing through the circuitry during the execution of chip operations. Side channel is one of the most widely used attack methods in cryptanalysis. In order to avoid such attacks, the algorithmic implementations can be protected from side channel leakage with the use of different countermeasures. These countermeasures can be built on either software or hardware. The objective is to reduce, or even completely eliminate, the leakage of the device related to confidential data. Generally speaking, there are two main approaches to do so. The first aims to reduce the side channel observability, while the second intends to undermine the predictability of the data. This project focuses on designing and implementing different countermeasures that protect cryptographic implementations from side channel attacks, and test and analyze them afterwards. The countermeasures will be implemented in software and then tested though Correlation Power Analysis in a hardware device. The Advanced Encryption Standard (AES) algorithm will be used as a base structure, in order to improve its cryptographic security with the different countermeasures designed. However, the election of AES does not reduce the scope of this project since the implemented countermeasures could be applied to other cryptographic algorithms as well

    Towards a Secure Smart Grid Storage Communications Gateway

    Full text link
    This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.Comment: 6 pages, 2 figure

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore