343 research outputs found

    Algorithmic and Hardness Results for the Colorful Components Problems

    Full text link
    In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph GG such that in the resulting graph G′G' all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want G′G' to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP NP-hard (assuming P≠NPP \neq NP). Then, we show that the second problem is APX APX-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP NP-hard. Finally, we show that the third problem does not admit polynomial time approximation within a factor of ∣V∣1/14−ϵ|V|^{1/14 - \epsilon} for any ϵ>0\epsilon > 0, assuming P≠NPP \neq NP (or within a factor of ∣V∣1/2−ϵ|V|^{1/2 - \epsilon}, assuming ZPP≠NPZPP \neq NP).Comment: 18 pages, 3 figure

    On Parameterized Complexity of Group Activity Selection Problems on Social Networks

    Full text link
    In Group Activity Selection Problem (GASP), players form coalitions to participate in activities and have preferences over pairs of the form (activity, group size). Recently, Igarashi et al. have initiated the study of group activity selection problems on social networks (gGASP): a group of players can engage in the same activity if the members of the group form a connected subset of the underlying communication structure. Igarashi et al. have primarily focused on Nash stable outcomes, and showed that many associated algorithmic questions are computationally hard even for very simple networks. In this paper we study the parameterized complexity of gGASP with respect to the number of activities as well as with respect to the number of players, for several solution concepts such as Nash stability, individual stability and core stability. The first parameter we consider in the number of activities. For this parameter, we propose an FPT algorithm for Nash stability for the case where the social network is acyclic and obtain a W[1]-hardness result for cliques (i.e., for classic GASP); similar results hold for individual stability. In contrast, finding a core stable outcome is hard even if the number of activities is bounded by a small constant, both for classic GASP and when the social network is a star. Another parameter we study is the number of players. While all solution concepts we consider become polynomial-time computable when this parameter is bounded by a constant, we prove W[1]-hardness results for cliques (i.e., for classic GASP).Comment: 9 pages, long version of accepted AAMAS-17 pape

    Some results on more flexible versions of Graph Motif

    Full text link
    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif: one where the size of the solution is maximized, the other when the number of substitutions of colors to obtain the motif from the solution is minimized. We also study a decision version of Graph Motif where the connectivity constraint is replaced by the well known notion of graph modularity. While the problem remains NP-complete, it allows algorithms in FPT for biologically relevant parameterizations

    Parameterized Algorithms for Modular-Width

    Full text link
    It is known that a number of natural graph problems which are FPT parameterized by treewidth become W-hard when parameterized by clique-width. It is therefore desirable to find a different structural graph parameter which is as general as possible, covers dense graphs but does not incur such a heavy algorithmic penalty. The main contribution of this paper is to consider a parameter called modular-width, defined using the well-known notion of modular decompositions. Using a combination of ILPs and dynamic programming we manage to design FPT algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path and Hamiltonian cycle), which are W-hard for both clique-width and its recently introduced restriction, shrub-depth. We thus argue that modular-width occupies a sweet spot as a graph parameter, generalizing several simpler notions on dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with arXiv:1304.5479 by other author
    • …
    corecore