806 research outputs found

    DNA Computing by Self-Assembly

    Get PDF
    Information and algorithms appear to be central to biological organization and processes, from the storage and reproduction of genetic information to the control of developmental processes to the sophisticated computations performed by the nervous system. Much as human technology uses electronic microprocessors to control electromechanical devices, biological organisms use biochemical circuits to control molecular and chemical events. The engineering and programming of biochemical circuits, in vivo and in vitro, would transform industries that use chemical and nanostructured materials. Although the construction of biochemical circuits has been explored theoretically since the birth of molecular biology, our practical experience with the capabilities and possible programming of biochemical algorithms is still very young

    Evolutionary Dynamics in a Simple Model of Self-Assembly

    Full text link
    We investigate the evolutionary dynamics of an idealised model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model's rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding, complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterised, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers

    Programmable Control of Nucleation for Algorithmic Self-Assembly

    Get PDF
    Algorithmic self-assembly, a generalization of crystal growth processes, has been proposed as a mechanism for autonomous DNA computation and for bottom-up fabrication of complex nanostructures. A `program' for growing a desired structure consists of a set of molecular `tiles' designed to have specific binding interactions. A key challenge to making algorithmic self-assembly practical is designing tile set programs that make assembly robust to errors that occur during initiation and growth. One method for the controlled initiation of assembly, often seen in biology, is the use of a seed or catalyst molecule that reduces an otherwise large kinetic barrier to nucleation. Here we show how to program algorithmic self-assembly similarly, such that seeded assembly proceeds quickly but there is an arbitrarily large kinetic barrier to unseeded growth. We demonstrate this technique by introducing a family of tile sets for which we rigorously prove that, under the right physical conditions, linearly increasing the size of the tile set exponentially reduces the rate of spurious nucleation. Simulations of these `zig-zag' tile sets suggest that under plausible experimental conditions, it is possible to grow large seeded crystals in just a few hours such that less than 1 percent of crystals are spuriously nucleated. Simulation results also suggest that zig-zag tile sets could be used for detection of single DNA strands. Together with prior work showing that tile sets can be made robust to errors during properly initiated growth, this work demonstrates that growth of objects via algorithmic self-assembly can proceed both efficiently and with an arbitrarily low error rate, even in a model where local growth rules are probabilistic.Comment: 37 pages, 14 figure

    Connected Coordinated Motion Planning with Bounded Stretch

    Full text link
    We consider the problem of connected coordinated motion planning for a large collective of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-complete, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of dd, then the total duration of our overall schedule is O(d)\mathcal{O}(d), which is optimal up to constant factors.Comment: 28 pages, 18 figures, full version of an extended abstract that appeared in the proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC 2021); revised version (more details added, and typing errors corrected

    Self-assembly: modelling, simulation, and planning

    Get PDF
    Samoskládání je proces, při kterém se kolekce neuspořádaných částic samovolně orientuje do uspořádaného vzoru nebo funkční struktury bez působení vnější síly, pouze za pomoci lokálních interakcí mezi samotnými částicemi. Tato teze se zaměřuje na teorii dlaždicových samoskládacích systémů a jejich syntézu. Nejdříve je představena oblast výzkumu věnující se dlaždičovým samoskládacím systémům, a poté jsou důkladně popsány základní typy dlaždicových skládacích systémů, kterými jsou abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), a 2-Handed Assembly Model (2HAM ). Poté jsou představeny novější modely a modely se specifickým použitím. Dále je zahrnut stručný popis původu teorie dlaždicového samoskládání společně s krátkým popisem nedávného výzkumu. Dále jsou představeny dva obecné otevřené problémy dlaždicového samoskládání s hlavním zaměřením na problém Pattern Self-Assembly Tile Set Synthesis (PATS), což je NP-těžká kombinatorická optimalizační úloha. Nakonec je ukázán algoritmus Partition Search with Heuristics (PS-H ), který se používá k řešení problému PATS. Následovně jsou demonstrovány dvě aplikace, které byly vyvinuty pro podporu výzkumu abstraktních dlaždicových skládacích modelů a syntézy množin dlaždic pro samoskládání zadaných vzorů. První aplikace je schopná simulovat aTAM a 2HAM systémy ve 2D prostoru. Druhá aplikace je řešič PATS problému, který využívá algoritmu PS-H. Pro obě aplikace jsou popsány hlavní vlastnosti a návrhová rozhodnutí, která řídila jejich vývoj. Nakonec jsou předloženy výsledky několika experimentů. Jedna skupina experimentů byla zaměřena na ověření výpočetní náročnosti vyvinutých algoritmů pro simulátor. Druhá sada experimentů zkoumala vliv jednotlivých vlastností vzorů na vlastnosti dlaždicových systémů, které byly získány syntézou ze vzorů pomocí vyvinutého řešiče PATS problému. Bylo prokázáno, že algoritmus simulující aTAM systém má lineární časovou výpočetní náročnost, zatímco algoritmus simulující 2HAM systém má exponenciální časovou výpočetní náročnost, která navíc silně závisí na simulovaném systému. Aplikace pro řešení syntézy množiny dlaždic ze vzorů je schopna najít relativně malé řešení i pro velké zadané vzory, a to v přiměřeném čase.Self-assembly is the process in which a collection of disordered units organise themselves into ordered patterns or functional structures without any external direction, solely using local interactions among the components. This thesis focuses on the theory of tile-based self-assembly systems and their synthesis. First, an introduction to the study field of tile-based self-assembly systems are given, followed by a thorough description of common types of tile assembly systems such as abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), and 2-Handed Assembly Model (2HAM ). After that, various recently developed models and models with specific applications are listed. A brief summary of the origins of the tile-based self-assembly is also included together with a short review of recent results. Two general open problems are presented with the main focus on the Pattern Self-Assembly Tile Set Synthesis (PATS) problem, which is NP-hard combinatorial optimisation problem. Partition Search with Heuristics (PS-H ) algorithm is presented as it is used for solving the PATS problem. Next, two applications which were developed to study the abstract tile assembly models and the synthesis of tile sets for pattern self-assembly are introduced. The first application is a simulator capable of simulating aTAM and 2HAM systems in 2D. The second application is a solver of the PATS problem based around the PS-H algorithm. Main features and design decisions are described for both applications. Finally, results from several experiments are presented. One set of experiments were focused on verification of computation complexity of algorithms developed for the simulator, and the other set of experiments studied the influences of the properties of the pattern on the tile assembly system synthesised by our implementation of PATS problem solver. It was shown that the algorithm for simulating aTAM systems have linear computation time complexity, whereas the algorithm simulating 2HAM systems have exponential computation time complexity, which strongly varies based on the simulated system. The synthesiser application is capable of finding a relatively small solution even for quite large input patterns in reasonable amounts of time
    • …
    corecore