1,620 research outputs found

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link
    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.Comment: 9 LaTeX page

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    Towards a Universal Theory of Artificial Intelligence based on Algorithmic Probability and Sequential Decision Theory

    Get PDF
    Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown distribution. We unify both theories and give strong arguments that the resulting universal AIXI model behaves optimal in any computable environment. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI^tl, which is still superior to any other time t and space l bounded agent. The computation time of AIXI^tl is of the order t x 2^l.Comment: 8 two-column pages, latex2e, 1 figure, submitted to ijca

    Universal Intelligence: A Definition of Machine Intelligence

    Full text link
    A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.Comment: 50 gentle page
    • …
    corecore