2,395 research outputs found

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Abstract Diagnosis for Timed Concurrent Constraint programs

    Full text link
    The Timed Concurrent Constraint Language (tccp in short) is a concurrent logic language based on the simple but powerful concurrent constraint paradigm of Saraswat. In this paradigm, the notion of store-as-value is replaced by the notion of store-as-constraint, which introduces some differences w.r.t. other approaches to concurrency. In this paper, we provide a general framework for the debugging of tccp programs. To this end, we first present a new compact, bottom-up semantics for the language that is well suited for debugging and verification purposes in the context of reactive systems. We also provide an abstract semantics that allows us to effectively implement debugging algorithms based on abstract interpretation. Given a tccp program and a behavior specification, our debugging approach automatically detects whether the program satisfies the specification. This differs from other semiautomatic approaches to debugging and avoids the need to provide symptoms in advance. We show the efficacy of our approach by introducing two illustrative examples. We choose a specific abstract domain and show how we can detect that a program is erroneous.Comment: 16 page

    Program logics for homogeneous meta-programming.

    Get PDF
    A meta-program is a program that generates or manipulates another program; in homogeneous meta-programming, a program may generate new parts of, or manipulate, itself. Meta-programming has been used extensively since macros were introduced to Lisp, yet we have little idea how formally to reason about metaprograms. This paper provides the first program logics for homogeneous metaprogramming – using a variant of MiniMLe by Davies and Pfenning as underlying meta-programming language.We show the applicability of our approach by reasoning about example meta-programs from the literature. We also demonstrate that our logics are relatively complete in the sense of Cook, enable the inductive derivation of characteristic formulae, and exactly capture the observational properties induced by the operational semantics

    Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications

    Full text link
    MapReduce is a popular programming paradigm for developing large-scale, data-intensive computation. Many frameworks that implement this paradigm have recently been developed. To leverage these frameworks, however, developers must become familiar with their APIs and rewrite existing code. Casper is a new tool that automatically translates sequential Java programs into the MapReduce paradigm. Casper identifies potential code fragments to rewrite and translates them in two steps: (1) Casper uses program synthesis to search for a program summary (i.e., a functional specification) of each code fragment. The summary is expressed using a high-level intermediate language resembling the MapReduce paradigm and verified to be semantically equivalent to the original using a theorem prover. (2) Casper generates executable code from the summary, using either the Hadoop, Spark, or Flink API. We evaluated Casper by automatically converting real-world, sequential Java benchmarks to MapReduce. The resulting benchmarks perform up to 48.2x faster compared to the original.Comment: 12 pages, additional 4 pages of references and appendi
    • 

    corecore