2,189 research outputs found

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Undisclosed, unmet and neglected challenges in multi-omics studies

    Full text link
    [EN] Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies.This work has been funded by the Spanish Ministry of Science and Innovation with grant number BES-2016-076994 to A.A.-L.Tarazona, S.; Arzalluz-Luque, Á.; Conesa, A. (2021). Undisclosed, unmet and neglected challenges in multi-omics studies. Nature Computational Science. 1(6):395-402. https://doi.org/10.1038/s43588-021-00086-z3954021

    Voices in methods development

    Get PDF
    To mark the 15th anniversary of Nature Methods, we asked scientists from across diverse fields of basic biology research for their views on the most exciting and essential methodological challenges that their communities are poised to tackle in the near future

    A note on retrodiction and machine evolution

    Full text link
    Biomolecular communication demands that interactions between parts of a molecular system act as scaffolds for message transmission. It also requires an evolving and organized system of signs - a communicative agency - for creating and transmitting meaning. Here I explore the need to dissect biomolecular communication with retrodiction approaches that make claims about the past given information that is available in the present. While the passage of time restricts the explanatory power of retrodiction, the use of molecular structure in biology offsets information erosion. This allows description of the gradual evolutionary rise of structural and functional innovations in RNA and proteins. The resulting chronologies can also describe the gradual rise of molecular machines of increasing complexity and computation capabilities. For example, the accretion of rRNA substructures and ribosomal proteins can be traced in time and placed within a geological timescale. Phylogenetic, algorithmic and theoretical-inspired accretion models can be reconciled into a congruent evolutionary model. Remarkably, the time of origin of enzymes, functional RNA, non-ribosomal peptide synthetase (NRPS) complexes, and ribosomes suggest they gradually climbed Chomsky's hierarchy of formal grammars, supporting the gradual complexification of machines and communication in molecular biology. Future retrodiction approaches and in-depth exploration of theoretical models of computation will need to confirm such evolutionary progression.Comment: 7 pages, 1 figur

    Voices in methods development

    Get PDF
    To mark the 15th anniversary of Nature Methods, we asked scientists from across diverse fields of basic biology research for their views on the most exciting and essential methodological challenges that their communities are poised to tackle in the near future
    corecore