1,357 research outputs found

    Algorithmic Aspects of Private Bayesian Persuasion

    Get PDF
    We consider a multi-receivers Bayesian persuasion model where an informed sender tries to persuade a group of receivers to take a certain action. The state of nature is known to the sender, but it is unknown to the receivers. The sender is allowed to commit to a signaling policy where she sends a private signal to every receiver. This work studies the computation aspects of finding a signaling policy that maximizes the sender\u27s revenue. We show that if the sender\u27s utility is a submodular function of the set of receivers that take the desired action, then we can efficiently find a signaling policy whose revenue is at least (1-1/e) times the optimal. We also prove that approximating the sender\u27s optimal revenue by a factor better than (1-1/e) is NP-hard and, hence, the developed approximation guarantee is essentially tight. When the sender\u27s utility is a function of the number of receivers that take the desired action (i.e., the utility function is anonymous), we show that an optimal signaling policy can be computed in polynomial time. Our results are based on an interesting connection between the Bayesian persuasion problem and the evaluation of the concave closure of a set function

    Algorithmic Cheap Talk

    Full text link
    The literature on strategic communication originated with the influential cheap talk model, which precedes the Bayesian persuasion model by three decades. This model describes an interaction between two agents: sender and receiver. The sender knows some state of the world which the receiver does not know, and tries to influence the receiver's action by communicating a cheap talk message to the receiver. This paper initiates the algorithmic study of cheap talk in a finite environment (i.e., a finite number of states and receiver's possible actions). We first prove that approximating the sender-optimal or the welfare-maximizing cheap talk equilibrium up to a certain additive constant or multiplicative factor is NP-hard. Fortunately, we identify three naturally-restricted cases that admit efficient algorithms for finding a sender-optimal equilibrium. These include a state-independent sender's utility structure, a constant number of states or a receiver having only two actions

    Access to Population-Level Signaling as a Source of Inequality

    Get PDF
    We identify and explore differential access to population-level signaling (also known as information design) as a source of unequal access to opportunity. A population-level signaler has potentially noisy observations of a binary type for each member of a population and, based on this, produces a signal about each member. A decision-maker infers types from signals and accepts those individuals whose type is high in expectation. We assume the signaler of the disadvantaged population reveals her observations to the decision-maker, whereas the signaler of the advantaged population forms signals strategically. We study the expected utility of the populations as measured by the fraction of accepted members, as well as the false positive rates (FPR) and false negative rates (FNR). We first show the intuitive results that for a fixed environment, the advantaged population has higher expected utility, higher FPR, and lower FNR, than the disadvantaged one (despite having identical population quality), and that more accurate observations improve the expected utility of the advantaged population while harming that of the disadvantaged one. We next explore the introduction of a publicly-observable signal, such as a test score, as a potential intervention. Our main finding is that this natural intervention, intended to reduce the inequality between the populations' utilities, may actually exacerbate it in settings where observations and test scores are noisy

    Algorithmic Persuasion with Evidence

    Get PDF
    We consider a game of persuasion with evidence between a sender and a receiver. The sender has private information. By presenting evidence on the information, the sender wishes to persuade the receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender's utility depends solely on whether or not the receiver takes the action. The receiver's utility depends on both the action as well as the sender's private information. We study three natural variations. First, we consider sequential equilibria of the game without commitment power. Second, we consider a persuasion variant, where the sender commits to a signaling scheme and then the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation variant, where the receiver first commits to taking the action if being presented certain evidence, and then the sender presents evidence to maximize the probability the action is taken. We study these variants through the computational lens, and give hardness results, optimal approximation algorithms, as well as polynomial-time algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite program that might be of independent interest, since, to the best of our knowledge, it is the first such approximation algorithm for a natural problem in algorithmic economics.Comment: 31 page
    • …
    corecore