966 research outputs found

    Minimum-Weight Edge Discriminator in Hypergraphs

    Full text link
    In this paper we introduce the concept of minimum-weight edge-discriminators in hypergraphs, and study its various properties. For a hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), a function λ:VZ+{0}\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\} is said to be an {\it edge-discriminator} on H\mathcal H if vEiλ(v)>0\sum_{v\in E_i}{\lambda(v)}>0, for all hyperedges EiEE_i\in \mathcal E, and vEiλ(v)vEjλ(v)\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}, for every two distinct hyperedges Ei,EjEE_i, E_j \in \mathcal E. An {\it optimal edge-discriminator} on H\mathcal H, to be denoted by λH\lambda_\mathcal H, is an edge-discriminator on H\mathcal H satisfying vVλH(v)=minλvVλ(v)\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}, where the minimum is taken over all edge-discriminators on H\mathcal H. We prove that any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n|\mathcal E|=n, satisfies vVλH(v)n(n+1)/2\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq n(n+1)/2, and equality holds if and only if the elements of E\mathcal E are mutually disjoint. For rr-uniform hypergraphs H=(V,E)\mathcal H=(\mathcal V, \mathcal E), it follows from results on Sidon sequences that vVλH(v)Vr+1+o(Vr+1)\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1}), and the bound is attained up to a constant factor by the complete rr-uniform hypergraph. Next, we construct optimal edge-discriminators for some special hypergraphs, which include paths, cycles, and complete rr-partite hypergraphs. Finally, we show that no optimal edge-discriminator on any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n(3)|\mathcal E|=n (\geq 3), satisfies vVλH(v)=n(n+1)/21\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=n(n+1)/2-1, which, in turn, raises many other interesting combinatorial questions.Comment: 22 pages, 5 figure

    Group Irregularity Strength of Connected Graphs

    Get PDF
    We investigate the group irregularity strength (sg(G)s_g(G)) of graphs, i.e. the smallest value of ss such that taking any Abelian group \gr of order ss, there exists a function f:E(G)\rightarrow \gr such that the sums of edge labels at every vertex are distinct. We prove that for any connected graph GG of order at least 3, sg(G)=ns_g(G)=n if n4k+2n\neq 4k+2 and sg(G)n+1s_g(G)\leq n+1 otherwise, except the case of some infinite family of stars
    corecore