1,451 research outputs found

    Optimization of Computer Aided Detection systems: an evolutionary approach

    Get PDF
    Computer Aided Diagnosis (CAD) systems are designed to aid the radiologist in interpreting medical images. They are usually based on lesion detection and segmentation algorithms whose performance depends on a large number of parameters. While time consuming and sub-optimal, manual adjustment is still widely used to adjust parameter values. Genetic or evolutionary algorithms (GA) are effective optimization methods that mimic biological evolution. Genetic algorithms have been shown to efficiently manage complex search spaces, and can be applied to all kinds of objective functions, including discontinuous, nondifferentiable, or highly nonlinear ones. In this study, we have adopted an evolutionary approach to the problem of parameter optimization. We show that the genetic algorithm is able to effectively converge to a better solution than manual optimization on a case study for digital breast tomosynthesis CAD. Parameter optimization was framed as a constrained optimization problem, where the function to be maximized was defined as weighted sum of sensitivity, false positive rate and segmentation accuracy. A modified Dice coefficient was defined to assess the segmentation quality of individual lesions. Finally, all viable solutions evaluated by the GA were studied by means of exploratory data analysis techniques, such as association rules, to gain useful insight on the strength of the influence of each parameter on overall algorithm performance. We showed that this combination was able to identify multiple ranges of viable solutions with good segmentation accuracy

    Simulation-based parameter optimization for fetal brain MRI super-resolution reconstruction

    Full text link
    Tuning the regularization hyperparameter α\alpha in inverse problems has been a longstanding problem. This is particularly true in the case of fetal brain magnetic resonance imaging, where an isotropic high-resolution volume is reconstructed from motion-corrupted low-resolution series of two-dimensional thick slices. Indeed, the lack of ground truth images makes challenging the adaptation of α\alpha to a given setting of interest in a quantitative manner. In this work, we propose a simulation-based approach to tune α\alpha for a given acquisition setting. We focus on the influence of the magnetic field strength and availability of input low-resolution images on the ill-posedness of the problem. Our results show that the optimal α\alpha, chosen as the one maximizing the similarity with the simulated reference image, significantly improves the super-resolution reconstruction accuracy compared to the generally adopted default regularization values, independently of the selected pipeline. Qualitative validation on clinical data confirms the importance of tuning this parameter to the targeted clinical image setting.Comment: 11 pages. This work has been submitted to MICCAI 202

    Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction

    Get PDF
    Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate identification and segmentation of multiple abnormal tissues within tumor volume in MRI is essential for precise survival prediction. Manual tumor and abnormal tissue detection and sizing are tedious, and subject to inter-observer variability. Consequently, this work proposes a fully automated MRI-based glioblastoma and abnormal tissue segmentation, and survival prediction framework. The framework includes radiomics feature-guided deep neural network methods for tumor tissue segmentation; followed by survival regression and classification using these abnormal tumor tissue segments and other relevant clinical features. The proposed multiple abnormal tumor tissue segmentation step effectively fuses feature-based and feature-guided deep radiomics information in structural MRI. The survival prediction step includes two representative survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018. The best overall survival pipeline in the proposed framework achieves leave-one-out cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation datasets, respectively. These training and validation accuracies for tumor patient survival prediction are among the highest reported in literature. Finally, a critical analysis of radiomics features and efficacy of these features in segmentation and survival prediction performance is presented as lessons learned

    Interpretability of radiomics models is improved when using feature group selection strategies for predicting molecular and clinical targets in clear-cell renal cell carcinoma: insights from the TRACERx Renal study

    Get PDF
    BACKGROUND: The aim of this work is to evaluate the performance of radiomics predictions for a range of molecular, genomic and clinical targets in patients with clear cell renal cell carcinoma (ccRCC) and demonstrate the impact of novel feature selection strategies and sub-segmentations on model interpretability. METHODS: Contrast-enhanced CT scans from the first 101 patients recruited to the TRACERx Renal Cancer study (NCT03226886) were used to derive radiomics classification models to predict 20 molecular, histopathology and clinical target variables. Manual 3D segmentation was used in conjunction with automatic sub-segmentation to generate radiomics features from the core, rim, high and low enhancing sub-regions, and the whole tumour. Comparisons were made between two classification model pipelines: a Conventional pipeline reflecting common radiomics practice, and a Proposed pipeline including two novel feature selection steps designed to improve model interpretability. For both pipelines nested cross-validation was used to estimate prediction performance and tune model hyper-parameters, and permutation testing was used to evaluate the statistical significance of the estimated performance measures. Further model robustness assessments were conducted by evaluating model variability across the cross-validation folds. RESULTS: Classification performance was significant (p  0.1. Five of these targets (necrosis on histology, presence of renal vein invasion, overall histological stage, linear evolutionary subtype and loss of 9p21.3 somatic alteration marker) had AUROC > 0.8. Models derived using the Proposed pipeline contained fewer feature groups than the Conventional pipeline, leading to more straightforward model interpretations without loss of performance. Sub-segmentations lead to improved performance and/or improved interpretability when predicting the presence of sarcomatoid differentiation and tumour stage. CONCLUSIONS: Use of the Proposed pipeline, which includes the novel feature selection methods, leads to more interpretable models without compromising prediction performance. TRIAL REGISTRATION: NCT03226886 (TRACERx Renal
    • …
    corecore